An enamine method for the synthesis of 1-azaazulene derivatives. Reactions of troponimines with enamines[hair space]1

(Note: The full text of this document is currently only available in the PDF Version )

Tohru Takayasu and Makoto Nitta


Abstract

A short new synthesis of 1-azaazulene derivatives consists of the enamine alkylation of troponimines 4–7 with pyrrolidino enamines, which are derived from cycloalkanones, aliphatic ketones, and heterocyclic ketones, to lead to formal [8 + 2] cycloadducts and subsequent aromatization under the reaction conditions. The reactions are quite general, and N-hydroxy- and N-methoxytroponimines, 4 and 5, are less reactive than N-mesyloxy- and N-tosyloxytroponimines, 6 and 7, which react smoothly even at room temperature. In the reaction of the pyrrolidino enamine, which is derived from cyclopentanone, forcing conditions are required, probably because of ring strain in the [8 + 2] cycloadduct 11a. Furthermore, in the reactions of 4–7 with isomeric mixtures of two pyrrolidino enamines, 15/16 and 20/21, only enamines 15 and 20 can intervene in the cycloaddition reactions, giving 1-azaazulene derivatives. In the context of the reactivity of 4–7 and pyrrolidino enamines, and the selectivity observed in the reactions with isomeric mixtures of enamines, minimal neglect of differential overlap (MNDO) calculations on troponimines 4–7 and pyrrolidino enamines, as well as isomeric mixtures of two enamines, 15/16 and 20/21, were performed to gain further insight into the reactions via a theoretical interpretation based upon frontier molecular orbital theory (FMO). Troponimines 6 and 7 have lower LUMOs and they are more reactive than troponimines 4 and 5; the energy level of the HOMO of the pyrrolidino enamine derived from cyclopentanone is relatively higher as compared to those of other pyrrolidino enamines. Enamines 15 and 20 are less stable and energy levels of the HOMOs are higher as compared with those of the corresponding isomers 16 and 21, respectively.


References

  1. A preliminary account of this paper has appeared: M. Nitta and T. Takayasu, Heterocycles, 1997, 45, 841 Search PubMed.
  2. For reviews: T. Nishiwaki and N. Abe, Heterocycles, 1981, 15, 547 Search PubMed; M. Kimura, J. Synth. Org. Chem. Jpn., 1981, 39, 690 CAS.
  3. K. Hafner, H.-G. Kläs and M. C. Bohm, Tetrahedron Lett., 1980, 21, 41 CrossRef CAS.
  4. O. Meth-Cohn, C. Moore and P. H. van Rooyen, J. Chem. Soc., Perkin Trans. 1, 1985, 1793 RSC.
  5. M. Nitta, Rev. Heteroat. Chem., 1993, 8, 87 Search PubMed.
  6. M. Nitta, Y. Iino, E. Hara and T. Kobayashi, J. Chem. Soc., Perkin Trans. 1, 1989, 51 RSC; M. Nitta, H. Kawaji and N. Kanomata, Tetrahedron Lett., 1992, 33, 251 CrossRef CAS; Y. Iino and M. Nitta, J. Chem. Soc., Perkin Trans. 1, 1994, 2579 RSC; M. Nitta, Y. Iino and K. Kamata, J. Chem. Soc., Perkin Trans. 1, 1994, 2721 RSC.
  7. M. Nitta, Y. Iino, T. Sugiyama and A. Akaogi, Tetrahedron Lett., 1993, 34, 831 CrossRef CAS; M. Nitta, Y. Iino, T. Sugiyama and A. Toyota, Tetrahedron Lett., 1993, 34, 835 CrossRef CAS.
  8. M. Nitta, Y. Iino, S. Mori and T. Takayasu, J. Chem. Soc., Perkin Trans. 1, 1995, 1001 RSC.
  9. T. Nishiwaki and T. Fukui, J. Chem. Res. (S), 1986, 288 Search PubMed; M. Nagahara, C. Ieda, M. Mimura, K. Uchida, S. Sato and M. Okumura, Eur. Pat. Appl. EP 376233, 1990 (Chem. Abstr., 1991, 114, 23797b) Search PubMed.
  10. K. Sanechika, S. Kajigaeshi and S. Kanemasa, Chem. Lett., 1977, 861 CAS.
  11. K. Ito, K. Saito and K. Takahashi, Bull. Chem. Soc. Jpn., 1992, 65, 812 CAS; K. Ito, K. Saito, S. Takeuchi and K. Takahashi, Heterocycles, 1992, 34, 1415 CAS and references cited therein.
  12. T. Takayasu, K. Itoh and M. Nitta, Heterocycles, 1996, 43, 2667 CAS.
  13. T. Takayasu, H. Katayama and M. Nitta, Heterocycles, 1997, 45, 567 CAS.
  14. P.-W. Yang, M. Yasunami and K. Takase, Tetrahedron Lett., 1971, 4275 CrossRef CAS; M. Yasunami, S. Miyoshi, N. Kanegae and K. Takase, Bull. Chem. Soc. Jpn., 1993, 66, 892 CAS; M. Yasunami, T. Hioki, Y. Kitamori, I. Kikuchi and K. Takase, Bull. Chem. Soc. Jpn., 1993, 66, 2273 CAS and references cited therein.
  15. T. Nozoe, T. Mukai, K. Takase and T. Nagase, Proc. Jpn. Acad., 1952, 28, 477 Search PubMed.
  16. K. Ito, Y. Hara, R. Sakakibara and K. Saito, Heterocycles, 1995, 41, 1675 CAS; H. Shinozaki, N. Yoshida and M. Tajima, Chem. Lett., 1980, 869 CAS.
  17. T. Minato, S. Yamabe, T. Hasegawa and T. Machiguchi, Tetrahedron, 1996, 52, 8439 CrossRef CAS.
  18. T. Machiguchi, Y. Wada, T. Hasegawa, S. Yamabe, T. Minato and T. Nozoe, J. Am. Chem. Soc., 1995, 117, 1258 CrossRef CAS.
  19. K. Fujimori, T. Fujita, K. Yamane, M. Yasunami and K. Takase, Chem. Lett., 1983, 1721 CAS.
  20. K. Fujimori, H. Fukazawa, Y. Nezu, K. Yamane, M. Yasunami and K. Takase, Chem. Lett., 1986, 1021 CAS.
  21. K. Fujimori, K. Yamane, M. Yasunami and K. Takase, Symposium on Fundamental Organic Chemistry, Tokyo, 1984, Abstr. No. C-23, p. 513 Search PubMed.
  22. P. Krogsgaard-Larsen and H. Hheds, Acta Chem. Scand., Ser. B, 1976, 30, 884 Search PubMed.
  23. G. Pitacco, F. P. Colonna, E. Valentin and A. Risaliti, J. Chem. Soc., Perkin Trans. 1, 1974, 1625 RSC.
  24. T.-L. Ho, Hard and Soft Acids and Bases Principle in Organic Chemistry, Academic Press, New York, 1977 Search PubMed.
  25. I. Fleming, Frontier Orbital and Organic Chemical Reactions, Wiley, New York, 1976 Search PubMed.
  26. M. Oda, M. Funamizu and Y. Kitahara, J. Chem. Soc., Chem. Commun., 1969, 737 RSC; M. Oda and Y. Kitahara, Synthesis, 1971, 368 CrossRef.
  27. The MNDO calculations were carried out by using MOPAC Ver. 6.12 program.
Click here to see how this site uses Cookies. View our privacy policy here.