New insights into the mechanism of phenolic oxidation with phenyliodonium(III) reagents

(Note: The full text of this document is currently only available in the PDF Version )

László Kürti, Pál Herczegh, Júlia Visy, Miklós Simonyi, Sándor Antus and Andrew Pelter


Abstract

Calculations indicate that the position of oxidation of substituted phenols is in accord with the intervention of phenoxenium ions as intermediates. The lack of induction of chirality in the reaction whether using a preformed chiral iodonium reagent or a homochiral alcohol as the medium also supports this hypothesis.


References

  1. (a) E. Vargolis, Tetrahedron, 1997, 53, 1179 CrossRef CAS; (b) T. Kitamura and Y. Fujiwara, Org. Prep. Proced. Int., 1997, 29, 409 CrossRef CAS.
  2. (a) C. B. Saitz, J. A. Valderrama, R. Tapia, F. Forina and M. C. Parades, Synth. Commun., 1992, 22, 955; (b) Y. Kita, H. Tohma, M. Inagaki and K. Hatanaka, Heterocycles, 1992, 33, 503 CAS; (c) A. Pelter and S. Elgendy, Tetrahedron Lett., 1988, 34, 677 CrossRef CAS; (d) T.-H. Lee, C.-C. Liao and W.-C. Liu, Tetrahedron Lett., 1996, 37, 5897 CrossRef CAS.
  3. (a) A. Pelter and S. A. M. Elgendy, J. Chem. Soc., Perkin Trans. 1, 1993, 1891 RSC; (b) A. McKillop, L. McLaren and R. J. K. Taylor, J. Chem. Soc., Perkin Trans. 1, 1994, 2047 RSC; (c) A. Pelter, A. Hussain, G. Smith and R. Ward, Tetrahedron, 1997, 53, 3879 CrossRef CAS; (d) A. S. Mitchell and R. A. Russell, Tetrahedron Lett., 1993, 34, 545 CrossRef CAS; Tetrahedron, 1997, 53, 4387 Search PubMed; (e) P. Wipf and Y. Kim, Tetrahedron Lett., 1996, 37, 5897 CrossRef CAS; (f) D. M. Goldstein and P. Wipf, Tetrahedron Lett., 1996, 37, 739 CrossRef CAS; (g) A. McKillop, L. McLaren, R. J. K. Taylor, D. J. Watson and N. J. Lewis, J. Chem. Soc., Perkin Trans. 1, 1996, 1385 RSC; (h) A. Pelter, P. Satchwell, R. S. Ward and K. Baker, J. Chem. Soc., Perkin Trans. 1, 1995, 18, 2201 RSC; (i) R. S. Ward, A. Pelter and A. El-Ghani, Tetrahedron, 1996, 52, 1303 CrossRef CAS; (j) P. Wipf and Y. Kim, J. Org Chem., 1993, 58, 1649 CrossRef CAS; P. Wipf, Y. Kim and P. C. Fritch, J. Org. Chem., 1993, 58, 7195 CrossRef CAS.
  4. (a) Gy. Litkei, K. Gulácsi, S. Antus and G. Blaskó, Liebigs Ann., 1995, 1711 CAS; (b) K. Gulácsi, Gy. Litkei, S. Antus and T. E. Gunda, Tetrahedron, 1998, 54, 13867 CrossRef CAS.
  5. (a) T. Ohwada and K. Shudo, J. Am. Chem. Soc., 1989, 111, 34 CrossRef CAS; (b) A. S. Mitchell, PhD Thesis, Deakin University, Australia, 1994.
  6. E. F. Haber and S. Rupprecht, Ber. Dtsch. Chem. Ges. A, 1991, 124, 481 Search PubMed.
  7. (a) G. Anderson, Acta Chem. Scand., Ser. B, 1976, 30, 61 Search PubMed; A. McKillop, P. H. Perry, M. Edwards, S. Antus, L. Farkas, M. Nógrádi and E. C. Taylor, J. Org. Chem., 1976, 41, 282 CrossRef CAS.
  8. The general procedure was to dissolve the phenol (5 mmol) in a mixture of dry CH2Cl2(10 ml) and the alcohol (100 mmol) and add the phenyliodonium reagent (5 mmol) in dry CH2Cl2(40 ml) over 5 min at room temperature. The reaction was stopped after 20 min and worked up in the usual way.
  9. Chiral-AGP from Chrom Tech AB (Hägerstrom/Sweden) using 0.01 M phosphate buffer (pH = 7.0) containing 2%(or 4% v/v) propan-2-ol at 360 mm. Retention times for the two isomers of 7a were 2.8 and 5.3 min and for 7b were 11.5 and 27.5 min.
  10. E. B. Merkhusev, Russ. Chem. Rev. (Engl. Transl.), 1987, 56, 826 Search PubMed.
  11. A solution was made of the corresponding dibenzoyltartaric acid (25 mmol) and PIDA (25 mmol) in chlorobenzene (250 ml). The chlorobenzene was slowly removed under reduced pressure at 55°C. The residue was taken into CH2Cl2 and precipitated with ether to give 8 and 9 as white powders, mp 130–135°C, [αD]= 41.54 (c 0.5 in CH2Cl2) for 8, δH 5.60 (s, 2H), 6.80–8.00 (m, 15H).
Click here to see how this site uses Cookies. View our privacy policy here.