Effect of intramolecular hydrogen-bonding network on the relative reactivities of carbohydrate OH groups[hair space]

(Note: The full text of this document is currently only available in the PDF Version )

Takuya Kurahashi, Tadashi Mizutani and Jun-ichi Yoshida


Abstract

In our efforts toward the development of enzyme-like catalysts for regioselective functionalization of unprotected sugars, DMAP-catalyzed acetylation of unprotected carbohydrates in chloroform was investigated. Product distributions of monoacetylated sugars were determined under kinetic control. To accurately evaluate the relative reactivity of each OH group, reaction conditions were used under which only monoacetylated sugars were obtained and almost no diacetylated sugars were formed as by-products. Systematic acetylation experiments of glucose, mannose, and galactose revealed the decisive role of intramolecular hydrogen-bonding networks among carbohydrate OH groups. The relative reactivities in the DMAP-catalyzed acetylation were successfully correlated with the calculated proton affinity of each OH group in carbohydrates.


References

  1. See, for example: Carbohydrate Recognition in Cellular Function, ed. G. Bock and S. Harnett, Ciba Foundation Symposium 145, Wiley, New York, 1989 Search PubMed.
  2. S. Takayama, G. J. McGarvey and C.-H. Wong, Chem. Soc. Rev., 1997, 26, 407 RSC.
  3. See, for example: S. Hanessian, Preparative Carbohydrate Chemistry, Marcel Dekker, New York, 1997 Search PubMed.
  4. C.-H. Wong, X.-S. Ye and Z. Zhang, J. Am. Chem. Soc., 1998, 120, 7137 CrossRef CAS.
  5. (a) S. David and S. Hanessian, Tetrahedron, 1985, 41, 643 CrossRef CAS; (b) K. Oshima, E. Kitazono and Y. Aoyama, Tetrahedron Lett., 1997, 38, 5001 CrossRef CAS.
  6. (a) J. M. Sugihara, Adv. Carbohydr. Chem. Biochem., 1953, 8, 1 Search PubMed; (b) A. H. Haines, Adv. Carbohydr. Chem. Biochem., 1976, 33, 11 Search PubMed; (c) Y. Tsuda and K. Yoshimoto, J. Synth. Org. Chem. Jpn., 1984, 42, 479 Search PubMed.
  7. C. Guibourdenche, J. Podlech and D. Seebach, Liebigs Ann., 1996, 1121 CAS.
  8. T.-H. Tang, D. M. Whitfield, S. P. Douglas, J. J. Krepinsky and I. G. Csizmadia, Can. J. Chem., 1992, 70, 2434; 1994, 72, 1803 Search PubMed; D. M. Whitfield, S. P. Douglas, T.-H. Tang, I. G. Csizmadia, H. Y. S. Pang, F. L. Moolten and J. J. Krepinsky, Can. J. Chem., 1994, 72, 2225 Search PubMed.
  9. (a) M. E. Brewster, M. Huang, E. Pop, J. Pitha, M. J. S. Dewar, J. J. Kaminski and N. Bodor, Carbohydr. Res., 1993, 242, 53 CrossRef CAS; (b) S. Houdier and S. Pérez, J. Carbohydr. Chem., 1995, 14, 1117 CAS.
  10. T. Kawabata, M. Nagato, K. Takasu and K. Fuji, J. Am. Chem. Soc., 1997, 119, 3169 CrossRef CAS; S. J. Miller, G. T. Copeland, N. Papaioannou, T. E. Horstmann and E. M. Ruel, J. Am. Chem. Soc., 1998, 120, 1629 CrossRef CAS.
  11. See, for example: K. Ishihara, H. Kurihara and H. Yamamoto, J. Org. Chem., 1993, 58, 3791 Search PubMed.
  12. R. P. Bonar-Law and J. K. M. Sanders, J. Am. Chem. Soc., 1995, 117, 259 CrossRef CAS.
  13. R. W. Binkley, Modern Carbohydrate Chemistry, Marcel Dekker, New York, 1988, p. 143 Search PubMed.
  14. S. Yamabe, T. Minato and Y. Kawabata, Can. J. Chem., 1984, 62, 235 CAS.
  15. P. Hubbard and W. J. Brittain, J. Org. Chem., 1998, 63, 677 CrossRef CAS.
  16. M. J. S. Dewar and K. M. Dieter, J. Am. Chem. Soc., 1986, 108, 8075 CrossRef CAS.
  17. F. Mohamadi, N. G. J. Richards, W. C. Guida, R. Liskamp, M. Lipton, C. Caufield, G. Chang, T. Hendrickson and W. C. Still, J. Comput. Chem., 1990, 11, 440 CrossRef CAS.
  18. J. J. P. Stewart, J. Comput. Chem., 1989, 10, 209, 221.
  19. T. Mizutani, T. Kurahashi, T. Murakami, N. Matsumi and H. Ogoshi, J. Am. Chem. Soc., 1997, 119, 8991 CrossRef.
Click here to see how this site uses Cookies. View our privacy policy here.