The effects of different ester and ketal protecting groups on the reactivity and selectivity of tartrate-derived silylketene acetals

(Note: The full text of this document is currently only available in the PDF Version )

Varinder K. Aggarwal, Susannah J. Masters, Harry Adams, Sharon E. Spey, George R. Brown and Alan J. Foubister


Abstract

The reaction of tartrate-derived silylketene acetals and benzaldehyde has been investigated and the yields and diastereoselectivities have been found to be dependent upon the nature of the tartrate ester. Utilising the di-tert-butyl tartrate derivatives, high yields were achieved using a variety of aldehyde substrates. The reactions all proceeded with excellent levels of stereoselectivity ([greater than or equal, slant] 82∶18); the sense of induction being dependent upon the choice of Lewis acid. BF3·OEt2 and TiCl3(OiPr) furnished complementary products in several cases and a model has been proposed to account for this observation.


References

  1. T. Katsuki and K. B. Sharpless, J. Am. Chem. Soc., 1980, 102, 5974 CrossRef CAS .
  2. R. Neaf and D. Seebach, Angew. Chem., Int. Ed. Engl., 1981, 20, 1030 CrossRef .
  3. V. K. Aggarwal, M. F. Wang and A. Zaparucha, J. Chem. Soc., Chem. Commun., 1994, 87 RSC .
  4. For a review of the chemistry biology of the squalestatins see: A. Nadin and K. C. Nicolaou, Angew. Chem., Int. Ed. Engl., 1996, 35, 1622 Search PubMed .
  5. (a) Six total syntheses have been published to date: E. M. Carreira and J. Du Bois, J. Am. Chem. Soc., 1994, 116, 10825 Search PubMed ; (b) K. C. Nicolaou, A. Nadin, J. E. Leresche, E. W. Yue and S. La Greca, Angew. Chem., Int. Ed. Engl., 1994, 33, 2190 CrossRef ; (c) D. A. Evans, J. C. Barrow, J. L. Leighton, A. J. Robichaud and M. Sefkow, J. Am. Chem. Soc., 1994, 116, 12111 CrossRef CAS ; (d) D. Stoermer, S. Caron and C. H. Heathcock, J. Org. Chem., 1996, 61, 9126 CrossRef CAS ; (e) H. Sato, S. Nakamura, N. Watanabe and S. Hashimoto, Synlett, 1997, 451 CAS ; (f) A. Armstrong, L. H. Jones and P. A. Barsanti, Tetrahedron Lett., 1998, 39, 3337 CrossRef CAS .
  6. T. Mukaiyama, K. Narasaka and K. Banno, Chem. Lett., 1973, 1011 CAS .
  7. A range of Lewis acids including TiCl3(OiPr), Sc(OTf)3 and EtAlCl2 were investigated but BF3·OEt2 afforded the highest yields and selectivities in all cases .
  8. D. A. Evans, B. W. Trotter and J. C. Barrow, Tetrahedron, 1997, 53, 8779 CrossRef CAS .
  9. M. Carmack and C. J. Kelley, J. Org. Chem., 1968, 35, 2171 CrossRef .
  10. NOE enhancements between H1 and H3 could not be obtained due to the close proximity of the 2 signals .
  11. C. H. Heathcock, S. K. Davidsen, K. T. Hug and L. A. Flippin, J. Org. Chem., 1986, 51, 3027 CrossRef CAS .
  12. C. Gennari, in Comprehensive Organic Synthesis, ed. B. M. Trost, Pergamon Press Inc, New York, 1991, vol. 2, p. 629 Search PubMed .
  13. H. E. Zimmerman and M. D. Traxler, J. Am. Chem. Soc., 1956, 79, 1920 .
  14. J. A. Musich and H. Rapoport, J. Am. Chem. Soc., 1978, 100, 4865 CrossRef CAS .
  15. S. Zheng and D. Y. Sogah, Tetrahedron, 1997, 53, 15469 CrossRef CAS .
  16. D. Seebach, E. Hungerbühler, R. Naef, P. Schnurrenberger, B. Weidmann and M. Züger, Synthesis, 1982, 138 CrossRef CAS .
  17. G. M. Sheldrick, SHELXL 93, An integrated system for refining crystal structures from diffraction data, University of Gottingen, Germany, 1993 .
Click here to see how this site uses Cookies. View our privacy policy here.