Simple oxidation of 3-O-silylated glycals: application in deblocking 3-O-protected glycals

(Note: The full text of this document is currently only available in the PDF Version )

Andreas Kirschning, Ulrike Hary, Claus Plumeier, Monika Ries and Lars Rose


Abstract

A high yielding allylic oxidation of 3-O-silylated glycals 5–10 with the reagent system PhI(OAc)2–TMSN3 is presented. The iodine(III) species generated under these conditions is a lot more effective for generating carbohydrate-derived 3-trialkylsiloxy-2,3-dihydro-4H-pyran-4-ones 11–15 than is [hydroxy(tosyloxy)iodo]benzene, the Koser reagent. Even disaccharide 9 containing the oxidation-labile phenylseleno group is smoothly oxidized to the corresponding enone 15. The hypervalent azido iodine reagent is complementary to the Koser reagent, because 3-O-benzylated or -acylated glycals cannot be oxidized. When the iodine(III)-mediated oxidation of 3-O-silylated or -benzylated glycals is followed by a reduction step, the formal 3-O-deblocking of glycals is achieved. In particular, the Luche reduction of enones obtained from the oxidation of lyxo-configured glycals 24 and 26 is highly selective and exclusively affords the corresponding lyxo-configured glycals 28 and 30. In some cases, these products can be transformed under Mitsunobu conditions into glycals with inverted configuration at C-3 in moderate yield.


References

  1. Y. Leblanc, B. J. Fitzsimmons, J. P. Springer and J. Rokach, J. Am. Chem. Soc., 1989, 111, 2995 CrossRef CAS; R. Grondin, Y. Leblanc and K. Hoogsteen, Tetrahedron Lett., 1991, 32, 5021 CrossRef CAS; Z. Kaluza, W. Abramski, C. Bel'zecki, J. Grodner, D. Mostowicz, R. Urbanski and M. Chmielewski, Synlett, 1994, 539 CAS.
  2. M. H. D. Postema, C-Glycoside Synthesis, CRC Press, Boca Raton, Ann Arbor, London, Tokyo, 1995 Search PubMed; D. E. Levy and C. Tang, The Chemistry of C-Glycosides, Tetrahedron Organic Chemistry Series Volume 13, Pergamon Press, Oxford, New York, Tokyo, 1995 Search PubMed.
  3. (a) R. E. Ireland, R. C. Anderson, R. Badoud, B. J. Fitzsimmons, D. J. McGarvey, S. Thaisrivongs and C. S. Wilcox, J. Am. Chem. Soc., 1983, 105, 1988 CrossRef CAS; (b) R. K. Boeckman, Jr, A. B. Charette, T. Asberom and B. H. Johnston, J. Am. Chem. Soc., 1991, 113, 5337 CrossRef CAS; (c) S.-H. Chen, R. F. Horvath, J. Joglar, M. J. Fisher and S. J. Danishefsky, J. Org. Chem., 1991, 56, 5834 CrossRef CAS; (d) S. J. Danishefsky, D. M. Armistead, F. E. Wincott, H. G. Selnick and R. Hungate, J. Am. Chem. Soc., 1989, 111, 2967 CrossRef CAS.
  4. S. J. Danishefsky and M. T. Bilodeau, Angew. Chem., 1996, 108, 1482; Angew. Chem., Int. Ed. Engl., 1996, 35, 1380 Search PubMed.
  5. A. Kirschning, A. Bechthold and J. Rohr, Top. Curr. Chem., 1997, 188, 1 CAS; K. Toshima and K. Tatsuta, Chem. Rev., 1993, 93, 1503 CrossRef CAS.
  6. S. Bouhroum and P. J. A. Vottero, Tetrahedron Lett., 1990, 31, 7441 CrossRef CAS; H. B. Mereyala and V. R. Kulkarni, Carbohydr. Res., 1989, 187, 154 CrossRef CAS.
  7. W. Klaffke, D. Springer and J. Thiem, Carbohydr. Res., 1991, 216, 475 CrossRef CAS; J. Thiem and W. Klaffke, J. Org. Chem., 1989, 54, 2006 CrossRef CAS.
  8. S. Köpper, I. Lundt, C. Pedersen and J. Thiem, Liebigs Ann. Chem., 1987, 531 Search PubMed.
  9. D. Horton, W. Priebe and O. Varela, Carbohydr. Res., 1985, 144, 325 CrossRef CAS.
  10. T. Henkel, J. Rohr, J. Beale and L. Schwenen, J. Antibiot. (Tokyo), 1990, 43, 492 CAS; J. S. Weber, C. Zolke, J. Rohr and J. Beale, J. Org. Chem., 1994, 59, 401.
  11. Recently, the synthesis of the hexasaccharide fragment has been accomplished by: Y. Guo and G. A. Sulikowski, J. Am. Chem. Soc., 1998, 120, 1392 Search PubMed.
  12. A. Kirschning, J. Org. Chem., 1995, 60, 1228 CrossRef CAS.
  13. A. Kirschning, Eur. J. Org. Chem., 1998, 2276.
  14. J. Harders, A. Garming, A. Jung, V. Kaiser, H. Monenschein, M. Ries, L. Rose, K.-U. Schöning, T. Weber and A. Kirschning, Liebigs Ann./Recueil., 1997, 2125 Search PubMed; A. Kirschning, Liebigs Ann., 1995, 2053 CAS.
  15. A. Kirschning and J. Harders, Tetrahedron, 1997, 53, 7867 CrossRef CAS; Synlett, 1996, 772 Search PubMed; R. Benhaddou, S. Czernecki and G. Ville, J. Org. Chem., 1992, 57, 4612 Search PubMed; T. E. Goodwin, N. M. Rothman, K. L. Salazar and L. S. Shannon, J. Org. Chem., 1992, 57, 2469 CrossRef CAS; M. Takiya, M. Ishii, K. Shibata, Y. Mikami and O. Mitsunobu, Chem. Lett., 1992, 1917 CrossRef CAS; T. Kaufmann, W. Klaffke, C. Philip and J. Thiem, Carbohydr. Res., 1990, 207, 33; V. Bellosta and S. Czernecki, Carbohydr. Res., 1987, 171, 279 CrossRef.
  16. A. Kirschning, J. Prakt. Chem., 1998, 340, 184 CAS.
  17. G. F. Koser and R. H. Wettach, J. Org. Chem., 1980, 45, 4988 CrossRef CAS.
  18. V. V. Zhdankin, R. Tykwinski, B. L. Williamson, P. J. Stang and N. S. Zefirov, Tetrahedron Lett., 1991, 32, 733 CrossRef CAS.
  19. H. Saltzman and J. G. Sharefkin, Org. Synth., 1963, 43, 60 CAS.
  20. Due to the two-phase character of the reaction, severe explosions may occur when PhI(N3)2 is generated from iodosobenzene (PhIO)n. In our experience, this problem can be avoided when (diacetoxyiodo) benzene is employed instead.
  21. M. Perez and J.-M. Beau, Tetrahedron Lett., 1989, 30, 75 CrossRef CAS.
  22. A. Kirschning, S. Domann, G. Dräger and L. Rose, Synlett, 1995, 767 CrossRef CAS; P. Magnus and M. B. Roe, Tetrahedron Lett., 1996, 37, 303 CrossRef CAS.
  23. J. Ehrenfreund and E. Zbiral, Liebigs Ann. Chem., 1973, 290 Search PubMed; Tetrahedron, 1972, 28, 1697 Search PubMed.
  24. P. Magnus, J. Lacour, P. A. Evans, M. B. Roe and C. Hulme, J. Am. Chem. Soc., 1996, 118, 3406 CrossRef CAS; P. Magnus and J. Lacour, J. Am. Chem. Soc., 1992, 114, 3993; 767 CrossRef CAS.
  25. J.-L. Luche, J. Am. Chem. Soc., 1978, 100, 2226 CrossRef CAS.
  26. For other examples of the selective reduction of 2,3-dihydro-H-pyran-4-ones see: K. J. Hale and S. Manaviazar, Tetrahedron Lett., 1994, 35, 8873 Search PubMed; T. Nakata, H. Matsukura, D. Jian and H. Nagashima, Tetrahedron Lett., 1994, 35, 8229 CrossRef CAS; A. Golebiowski and J. Jurczak, Tetrahedron, 1991, 47, 1045 CrossRef CAS; S. Danishefsky, S. Kobayashi and J. F. Kerwin, Jr, J. Org. Chem., 1982, 47, 1883 CrossRef CAS.
  27. The Luche reduction did also not work with other 4-O-silylated glycals such as compounds 11 or 14. Herscovici et al. applied the Luche reduction to similar enones, quoting much higher selectivities for threo-configured pyranones. However, we were unable to repeat their results: J. Herscovici, R. Montserret and K. Astonakis, Carbohydr. Res., 1988, 176, 219 Search PubMed When the substituent at C-4 (carbohydrate numbering) is missing, the Luche reduction is governed by the substituent at C-5, exclusively, leading to the corresponding threo-products: D. Meng, P. Bertinato, A. Balog, D.-S. Su, T. Kamenecka, E. J. Sorensen and S. J. Danishefsky, J. Am. Chem. Soc., 1997, 119, 10073 CrossRef CAS and ref. 26.
  28. For other examples of lipase-catalysed (de)acylations of glycals see: D. B. Berkowitz, S. J. Danishefsky and G. K. Schulte, J. Am. Chem. Soc., 1992, 114, 4518 Search PubMed; D. B. Berkowitz and S. J. Danishefsky, Tetrahedron Lett., 1991, 32, 5497 CrossRef CAS; E. W. Holla, Angew. Chem., 1989, 101, 222 CrossRef CAS; Angew. Chem., Int. Ed. Engl., 1989, 28, 220 CAS; J. Carbohydr. Chem., 1990, 9, 113 CAS.
  29. D. Horton, W. Priebe and O. Varela, Carbohydr. Res., 1985, 144, 317 CrossRef CAS.
  30. J. Rohr, S.-E. Wohlert, C. Oelkers, A. Kirschning and M. Ries, Chem. Commun., 1997, 973 RSC.
  31. O. Mitsunobu, Synthesis, 1981, 1 CrossRef CAS.
  32. R. D. Guthrie, R. W. Irvine, B. E. Davison, K. Henrick and J. Tritter, J. Chem. Soc., Perkin Trans. 2, 1981, 468 RSC.
  33. A. Sobti and G. A. Sulikowski, Tetrahedron Lett., 1994, 35, 3661 CrossRef CAS.
  34. N. G. Ramesh and K. K. Balasubramanian, Tetrahedron, 1995, 51, 255 CrossRef CAS; J. C. Lopez and B. Fraser-Reid, J. Chem. Soc., Chem. Commun., 1992, 94 RSC.
  35. J. Boivin, M. Pais and C. Monneret, Carbohydr. Res., 1980, 79, 193 CrossRef CAS; J. Thiem and D. Springer, Carbohydr. Res., 1985, 136, 325 CrossRef CAS; W. Klaffke, D. Springer and J. Thiem, Carbohydr. Res., 1988, 174, 201 CrossRef; C. Kolar, K. Dehmel and H.-P. Kraemer, Carbohydr. Res., 1990, 201, 249 CrossRef CAS.
  36. Other variants of the Mitsunobu reaction, using the reagent systems PPh3, DEAD, Zn(N3)2 in toluene or PPh3, DEAD, tetramethyl-guanidinium azide and acetic acid, did not lead to incorporation of azide.
  37. G. F. Koser, R. H. Wettach, J. M. Troup and B. A. Frenz, J. Org. Chem., 1976, 41, 3609 CrossRef CAS.
  38. M. Chmielewski, I. Fokt, J. Grodner, G. Grynkiewics and W. Szeja, J. Carbohydr. Chem., 1989, 8, 735 CAS.
  39. H. Kessler, A. Kling and M. Kottenhahn, Angew. Chem., 1990, 102, 452 CAS; Angew. Chem., Int. Ed. Engl., 1990, 29, 425 Search PubMed.
  40. T. Greene, in Protective Groups in Organic Synthesis, Wiley, New York, Chichester, Brisbane, Toronto, Singapore, 1981 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.