Free radical reactions to generate alkenes and/or ionic reactions to generate hydroximoyl chlorides when β-nitrostyrenes react with triethylaluminium or diethylaluminium chloride

(Note: The full text of this document is currently only available in the PDF Version )

Cheng-Ming Chu, Ju-Tsung Liu, Wen-Wei Lin and Ching-Fa Yao


Abstract

β-Nitrostyrenes 1 react with triethylaluminium or diethylaluminium chloride in diethyl ether solution and under nitrogen or argon to generate the alkenes 2 and the hydroximoyl chlorides 3 after work-up with ice-cold, conc. hydrochloric acid. The formation of the alkenes 2 is proposed to be a free-radical reaction via NO2[hair space]/alkyl substitution since the yields of the alkenes 2 are increased in the presence of benzoyl peroxide (Bz2O2) and decreased in the presence of galvinoxyl. Only the alkenes 2 are produced with a high stereoselectivity for the E isomers when β-nitrostyrenes react with triethylaluminium in the presence of one to two equivalents of Bz2O2 as free-radical initiator. The mechanism of the generation of the hydroximoyl chlorides 3 is proposed to proceed through a 1,4-addition pathway to produce nitronates A, then the protonated nitronates B or the nitroso cations C are trapped by chloride ion to form the final products. The yields of compounds 3 are also improved by the presence of Lewis acids such as MgCl2. Medium to high yields of the hydroximoyl chlorides 3 and traces or low yields of the alkenes 2 are generated when triethylaluminium or diethylaluminium chloride react with β-nitrostyrenes in the presence of three equivalents of MgCl2 under argon.


References

  1. C. D. Bedford and A. T. Nielsen, J. Org. Chem., 1978, 43, 2460 CrossRef CAS; T. Hayama, S. Tomoda, Y. Takeuchi and Y. Nomura, Tetrahedron Lett., 1983, 24, 2795 CrossRef CAS; D. Seebach and P. Knochel, Helv. Chim. Acta, 1984, 67, 261 CrossRef CAS; Tetrahedron, 1985, 41, 4861 Search PubMed.
  2. G. D. Buckley, J. Chem. Soc., 1947, 1494 RSC; G. D. Buckley and E. J. Ellery, J. Chem. Soc., 1947, 1497 RSC; M. S. Ashwood, L. A. Bell, P. G. Houghton and S. H. B. Wright, Synthesis, 1988, 379 CrossRef CAS.
  3. W. Langer and D. Seebach, Helv. Chim. Acta, 1979, 62, 1710 CAS.
  4. A.-T. Hanson and M. Nillson, Tetrahedron, 1982, 38, 389 CrossRef; S. Stiver and P. Yates, J. Chem. Soc., Chem. Commun., 1983, 50 RSC; C. Retherford, M.-C. P. Yeh, I. Schipor, H. G. Chen and P. Knochel, J. Org. Chem., 1989, 54, 5200 CrossRef CAS; C. Retherford and P. Knochel, Tetrahedron Lett., 1991, 32, 441 CrossRef CAS; C. Jubert and P. Knochel, J. Org. Chem., 1992, 57, 5425, 5431.
  5. A. Pecunioso and R. Menicagli, Tetrahedron, 1987, 43, 5411; J. Org. Chem., 1988, 53, 45, 2614; 1989, 54, 2391 Search PubMed.
  6. D. Seebach, H. Schafer, B. Schmidt and M. Schreiber, Angew. Chem., Int. Ed. Engl., 1992, 31, 1587 CrossRef.
  7. I. N. N. Namboothiri and A. Hassner, J. Organomet. Chem., 1996, 518, 69 CrossRef CAS.
  8. G. A. Russell and C.-F. Yao, Heteroatom Chem., 1992, 3, 209 CAS.
  9. Y. Han, Y.-Z. Huang and C.-M. Zhou, Tetrahedron Lett., 1996, 37, 3347 CrossRef CAS.
  10. C.-F. Yao, C.-M. Chu and J.-T. Liu, J. Org. Chem., 1998, 63, 719 CrossRef CAS.
  11. D. H. R. Barton, H. Togo and S. Z. Zard, Tetrahedron, 1985, 41, 5507 CrossRef CAS.
  12. H. Kunz and K. J. Pees, J. Chem. Soc., Perkin Trans. 1, 1989, 1168 RSC.
  13. Full crystallographic details, excluding structure factor tables, have been deposited at the Cambridge Crystallographic Data Centre (CCDC). For details of the deposition scheme, see ‘Instructions for Authors’, J. Chem. Soc., Perkin Trans. 1, available via the RSC Web page (http://www.rsc.org/authors). Any request to the CCDC for this material should quote the full literature citation and the reference number 207/277 Search PubMed.
  14. C.-F. Yao, W.-C. Chen and Y.-M. Lin, Tetrahedron Lett., 1996, 37, 6339 CrossRef CAS; C.-F. Yao, K.-H. Kao, J.-T. Liu, C.-M. Chu, Y. Wang, W.-C. Chen, Y.-M. Lin, W.-W. Lin, M.-C. Yan, J.-Y. Liu, M.-C. Chuang and J.-L. Shiue, Tetrahedron, 1998, 54, 791 CrossRef CAS.
  15. A. Alexakis, J. Vastra and P. Mangency, Tetrahedron Lett., 1997, 38, 7745 CrossRef CAS.
  16. T. Mukaiyama and T. Hoshino, J. Am. Chem. Soc., 1960, 82, 5339 CrossRef CAS.
  17. M. Christl and R. Huisgen, Chem. Ber., 1973, 106, 3345.
  18. G. Kumaran and G. H. Kulkarni, Tetrahedron Lett., 1994, 35, 5517 CrossRef CAS; J. Org. Chem., 1997, 62, 1516 Search PubMed.
  19. G. W. Kabalka and R. F. Daley, J. Am. Chem. Soc., 1973, 95, 4428 CrossRef CAS.
  20. A. G. Davies and B. P. Roberts, J. Chem. Soc. B, 1968, 1074 RSC.
  21. P. J. Krusic and J. L. Kochi, J. Am. Chem. Soc., 1969, 91, 3942 CrossRef CAS.
  22. P. D. Barlett and T. Funahashi, J. Am. Chem. Soc., 1962, 84, 2596 CrossRef CAS.
  23. D. P. Curran, N. A. Porter and B. Giese, in Stereochemistry of Radical Reactions, VCH, Weinheim, 1995, pp. 149, 268 Search PubMed.
  24. N. Rabjohn, in Org. Synth., 1963, Coll. Vol. IV, 573 Search PubMed.
  25. F. G. Bordwell and E. W. Garbisch, Jr, J. Org. Chem., 1962, 27, 3049 CAS.
  26. H. Ohta, N. Kobayashi and K. Ozaki, J. Org. Chem., 1989, 54, 1802 CrossRef CAS.
  27. L. A. Paquette and G. D. Maynard, J. Org. Chem., 1989, 54, 5054 CrossRef CAS; C. Zioudrou, I. Moustakali-Mavridis, P. Chrysochou and G. J. Karabatsons, Tetrahedron, 1978, 34, 3181 CrossRef CAS; B. R. James and C. G. Young, J. Organomet. Chem., 1985, 285, 321 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.