A comprehensive study of [2 + 2] cycloadditions and ene reactions of alkynyl chromium and tungsten carbene complexes with enol ethers and ketene acetals and of the stereochemistry of the electrocyclic ring opening of cyclobutenyl carbene complexes

(Note: The full text of this document is currently only available in the PDF Version )

William D. Wulff, Katherine L. Faron, Jing Su, James P. Springer and Arnold L. Rheingold


Abstract

The reactions of several alkynyl carbene complexes [(CO)5M[double bond, length half m-dash]C(OMe)C[triple bond, length half m-dash]CR1, M = Cr, W, R1 = Me, Me3Si, Ph, i-Pr, t-Bu) with a variety of acyclic enol ethers and ketene acetals [CH2[double bond, length half m-dash]C(OR2)R3, R2 = Et, Me, i-Bu, SiMe2t-Bu, R3 = H, Me, EtO, p-MeC6H4] are examined. These reactions occur to give [2 + 2] cycloaddition products in all cases except with R1 = Me3Si where ene products predominate. The cyclobutenyl carbene complexes produced in the [2 + 2] cycloadditions undergo rapid electrocyclic ring-opening at room temperature when R3 = H to give butadienyl carbene complexes as the isolated products. The reactions of the alkynyl carbene complexes with cyclic enol ethers derived from cyclohexanone and cyclopentanone are more prone to give ene products than the acyclic enol ethers. Greater proportions of ene products are seen for six- rather than five-membered ring enol ethers and for silyl rather than alkyl enol ethers and for silyl rather than carbon substituents at R1. Only small differences are seen between chromium and tungsten complexes. The [2 + 2] cycloadditions with the E- and Z-isomers of ethyl prop-1-enyl ether are stereospecific with complexes in which R1 = Me but not with those with R1 = SiMe3. The cyclobutenyl carbene complexes from the latter reactions with tungsten derivatives were found to undergo stereoselective electrocyclic ring-opening at 70 °C to give only Z,E-butadienyl carbene complexes which result from the conrotatory ring-opening in which the ethoxy group rotates in an outward direction. An E,E-isomer was also isolated from the thermolysis mixture; however, it was shown not to be a primary product but rather the result of an isomerization of the Z,E-butadienyl carbene complex under the reaction conditions. The stereoselectivity of the electrocyclic ring-opening of these cyclobutenyl carbene complexes was shown to be the same as that found for their corresponding cyclobutenyl esters. In one case, an interesting cine-rearrangement of a cyclobutenyl carbene complex was observed. The metal can be oxidatively removed from the cyclobutenyl carbene complexes to give the corresponding cyclobut-1-enyl esters in good yield. Thus, alkynyl carbene complexes can serve as synthons for alkynyl esters in [2 + 2] cycloadditions with enol ethers and have the attractive feature of greatly increased reaction rates. Additional synthetic interest can be associated with processes in which the [2 + 2] cycloaddition of the alkynyl carbene complex is coupled in tandem with other reactions of the carbene complex functionality in the cycloadducts. This is illustrated with Diels–Alder reactions of the butadienyl carbene complexes and cyclohexadienone annulations of a cyclobutenyl carbene complex.


References

  1. For reviews on the synthetic applications of Fischer carbene complexes, see: (a) E. J. Brown, Prog. Inorg. Chem., 1980, 27, 1 CAS; (b) K. H. Dötz, H. Fischer, P. Hofmann, F. R. Kreissel, U. Schubert and K. Weiss, Transition Metal Carbene Complexes, Verlag Chemie, DeerWeld Beach, FL, 1984 Search PubMed; (c) K. H. Dötz, Angew. Chem., Int. Ed. Engl., 1984, 23, 587 CrossRef; (d) C. P. Casey, React. Intermed., 1985, 3 Search PubMed; (e) W. D. Wulff, P. C. Tang, K. S. Chan, J. S. McCallum, D. C. Yang and S. R. Gilbertson, Tetrahedron, 1985, 41, 5813 CrossRef CAS; (f) K. S. Chan, G. A. Peterson, T. A. Brandvold, K. L. Faron, C. A. Challener, C. Hyldahl and W. D. Wulff, J. Organomet. Chem., 1987, 334, 9 CrossRef CAS; (g) K. H. Döz, in Organometallics in Organic Synthesis: Aspects of a Modern Interdisciplinary Field, eds. H. tom Dieck and A. de Meijere, Springer, Berlin, 1988 Search PubMed; (h) N. E. Schore, Chem. Rev., 1988, 88, 1081 CrossRef CAS; (i) Advances in Metal Carbene Chemistry, ed. U. Schuber, Kluwer Academic Publishers, Boston, MA, 1989 Search PubMed; (j) W. D. Wulff, in Advances in Metal-Organic Chemistry, ed. L. S. Liebeskind, JAI Press Inc., Greenwich, CT, 1989, vol. 1 Search PubMed; (k) W. D. Wulff, in Comprehensive Organic Synthesis, ed. B. M. Trost and I. Fleming, Pergamon Press, Oxford, 1991, vol. 5 Search PubMed; (l) W. D. Wulff, in Comprehensive Organometallic Chemistry II, ed. E. W. Abel, F. G. A. Stone and G. Wilkinson, Pergamon Press, Oxford, 1995, vol. 12 Search PubMed.
  2. W. D. Wulff and D. C. Yang, J. Am. Chem. Soc., 1983, 105, 6726 CrossRef CAS.
  3. For references to the more recent literature, see (a) W. D. Wulff, W. E. Bauta, R. W. Kaesler, P. J. Lankford, R. A. Miller, C. K. Murray and D. C. Yang, J. Am. Chem. Soc., 1990, 112, 3642 CrossRef CAS; (b) K. H. Dötz, R. Noack, K. Harms and G. Mueller, Tetrahedron, 1990, 46, 1235 CrossRef.
  4. (a) K. S. Chan and W. D. Wulff, J. Am. Chem. Soc., 1986, 108, 5229 CrossRef CAS; (b) F. R. Kriessl, E. O. Fischer and C. G. Kreiter, J. Organomet. Chem., 1973, 57, C9 CrossRef CAS; (c) K. S. Chan, M. L. Yeung, W. K. Chan, R. J. Wang and T. C. W. Mak, J. Org. Chem., 1995, 60, 1741 CrossRef CAS; (d) C. Baldoli, P. Del Buttero, E. Licandro, S. Maiorana, A. Papagni and A. Zanotti-Gerosa, J. Organomet. Chem., 1994, 476, C27 CrossRef CAS; (e) Y. H. Choi, B. S. Kang, Y.-J. Yoon, J. Kim and S. C. Shin, Synth. Commun., 1995, 25, 2043 CAS.
  5. (a) K. L. Faron and W. D. Wulff, J. Am. Chem. Soc., 1988, 110, 8727 CrossRef CAS; (b) K. L. Faron and W. D. Wulff, J. Am. Chem. Soc., 1990, 112, 1990 CrossRef CAS; (c) R. Pipoh, R. van Eldik, S. L. B. Wang and W. D. Wulff, Organometallics, 1992, 11, 490 CrossRef CAS.
  6. For alkynyl complexes, see: (a) F. Camps, J. M. Moreta, S. Ricart, J. M. Vinas, E. Molins and C. Miravitles, J. Chem. Soc., Chem. Commun., 1989, 1560 RSC; (b) F. Camps, M. G. Llebaria, J. M. Moreto, S. Ricart and J. M. Vinas, Tetrahedron Lett., 1990, 31, 2479 CrossRef CAS; (c) A. de Meijere and L. Wessjohann, Synlett, 1990, 20 CrossRef CAS; (d) F. Camps, L. Jordi, J. M. Moreto and S. Ricart, J. Organomet. Chem., 1992, 436, 189 CrossRef CAS; (e) L. Jordi, J. M. Moreto, S. Ricart, J. M. Vinas, E. Molins and C. Miravitles, J. Organomet. Chem., 1993, 444, C28 CrossRef CAS; (f) A. Segundo, J. M. Moreto, J. M. Vinas, S. Ricart and E. Molins, Organometallics, 1994, 13, 2467 CrossRef CAS; (g) R. Aumann, K. Roths, M. Läge and B. Krebs, Synlett, 1993, 667 CrossRef CAS; (h) L. Jordi, F. Camps, S. Ricart, J. M. Vinas, J. M. Moreto, M. Mejias and E. Molins, J. Organomet. Chem., 1995, 494, 53 CrossRef CAS; (i) C. A. Merlic and D. Xu, J. Am. Chem. Soc., 1991, 113, 7418 CrossRef CAS; (j) R. Aumann, B. Hildmann and R. Frölich, Organometallics, 1998, 17, 1197 CrossRef CAS For alkenyl complexes, see; (k) R. Aumann, H. Heinen, P. Hinterding, N. Sträter and B. Krebs, Chem. Ber., 1991, 124, 1229 CAS; (l) R. Aumann, B. Hildmann and R. Fröhlich, Organometallics, 1998, 17, 1197 CrossRef CAS.
  7. R. Bergamasco and D. H. S. Horn, in Progress in Ecdysone Research, ed. J. A. HoVman, Elsevier-North-Holland, Amsterdam, 1980 Search PubMed.
  8. (a) P. C. Tang and W. D. Wulff, J. Am. Chem. Soc., 1984, 106, 1132 CrossRef CAS; (b) W. E. Bauta, W. D. Wulff, S. F. Pavkovic and E. J. Zaluzec, J. Org. Chem., 1989, 54, 3249 CrossRef CAS; (c) The use of alkynyl cycloalkanols in this reaction will require a protected alcohol: J. P. A. Harrity, N. M. Heron, W. J. Kerr, S. McKendry, D. Middlemiss and J. S. Scott, Synlett, 1996, 1184 Search PubMed.
  9. (a) [2 + 2] Cycloadditions have been observed with halogenated oleWns and dienes; P. D. Bartlett, Quart. Rev., 1970, 24, 473 Search PubMed for more recent examples see:; (b) J. C. Little, J. Am. Chem. Soc., 1965, 87, 4020 CrossRef CAS; (c) P. D. Bartlett and J. J. B. Mallet, J. Am. Chem. Soc., 1976, 98, 143 CrossRef CAS; (d) C. G. Shin, H. Narukawa, M. Yamaura and J. Yoshimura, Tetrahedron Lett., 1977, 2147 CrossRef CAS; (e) L. Stella and J. L. Boucher, Tetrahedron Lett., 1982, 23, 953 CrossRef CAS.
  10. W. D. Wulff, D. C. Yang and C. K. Murray, J. Am. Chem. Soc., 1988, 110, 2653 CrossRef CAS.
  11. (a) M. Brookhart and W. B. Studabaker, Chem. Rev., 1987, 87, 411 CrossRef CAS; (b) M. P. Doyle, Chem. Rev., 1986, 86, 919 CrossRef CAS.
  12. W. D. Wulff and K. L. Faron, unpublished results.
  13. (a) M. F. Semmelhack, S. Tomoda, H. Nagaoka, S. D. Boettger and K. M. Jurst, J. Am. Chem. Soc., 1982, 104, 747 CrossRef; (b) K. C. Brannock, R. D. Burpitt and J. C. Thweatt, J. Org. Chem., 1963, 28, 1697 CAS.
  14. (a) K. Gollnick and S. Fries, Angew. Chem., Int. Ed. Engl., 1980, 19, 832 CrossRef; (b) K. C. Nicolaou, C. K. Hwang, M. E. Duggan and K. B. Reddy, Tetrahedron Lett., 1987, 1501 CrossRef CAS; (c) T. W. Doyle, Can. J. Chem., 1970, 48, 1929.
  15. (a) T. L. Gilchrist, R. Livingston, C. W. Rees and E. Angerer, J. Chem. Soc., Perkin Trans. 1, 1973, 2535 RSC; (b) H. Berke, P. Narter, G. Huttner and L. Zsolnai, Z. Naturforsch., Teil B, 1981, 86, 929 Search PubMed; (c) R. Aumann and H. Heinen, Chem. Ber., 1987, 120, 537 CAS; (d) K. N. Juneau, L. S. Hegedus and F. W. Roepke, J. Am. Chem. Soc., 1989, 111, 4762 CrossRef CAS; (e) F. Camps, J. M. Moreta, S. Ricart, J. M. Vinas, E. Molins and C. Miravitles, J. Chem. Soc., Chem. Commun., 1989, 1560 RSC; (f) S. L. B. Wang and W. D. Wulff, J. Am. Chem. Soc., 1990, 112, 4550 CrossRef CAS.
  16. (a) B. B. Snider, D. J. Rodini, R. S. E. Conn and S. Sealfon, J. Am. Chem. Soc., 1979, 101, 5283 CrossRef CAS; (b) B. B. Snider, D. M. Roush, D. J. Rodini, D. Gonzalez and D. Spindell, J. Org. Chem., 1980, 45, 2773 CrossRef CAS; (c) B. B. Snider, Acc. Chem. Res., 1980, 13, 426 CrossRef CAS.
  17. (a) R. D. Clark and K. G. Untch, J. Org. Chem., 1979, 44, 248 CrossRef CAS; (b) R. D. Clark and K. G. Untch, J. Org. Chem., 1979, 44, 253 CrossRef CAS.
  18. For recent examples, see: (a) M. R. Ibrahim and W. L. Jorgensen, J. Am. Chem. Soc., 1989, 111, 819 CrossRef CAS; (b) J. B. Lambert and G. T. J. Wang, Phys. Org. Chem., 1988, 1, 169 Search PubMed; (c) D. Hajdasz and R. Squires, J. Chem. Soc., Chem. Commun., 1988, 1212 RSC; (d) J. B. Lambert, G. Wang, R. B. Finzel and D. H. Teramura, J. Am. Chem. Soc., 1989, 109, 7838.
  19. K. N. Houk, D. C. Spellmeyer, C. W. Jefford, C. G. Rimbault, Y. Wang and R. D. Miller, J. Org. Chem., 1988, 53, 2125 CrossRef CAS.
  20. (a) N. H. Wasserman and J. L. Ives, J. Org. Chem., 1985, 50, 3573 CrossRef CAS; (b) D. G. Schmidt and H. Zimmer, J. Heterocycl. Chem., 1983, 20, 787 CAS; (c) R. F. Abdulla and K. H. Fuhr, J. Org. Chem., 1978, 43, 4248 CrossRef CAS; (d) S. F. Martin and D. R. Moore, Tetrahedron Lett., 1976, 4459 CrossRef CAS; (e) R. A. Conley and N. D. Heindel, J. Org. Chem., 1976, 41, 3743 CrossRef CAS; (f) B. A. Brady, J. A. Kennedy and W. I. O'Sullivan, Tetrahedron, 1973, 29, 359 CrossRef CAS; (g) P. N. Kevill, E. D. Weiler and N. H. Cromwell, J. Org. Chem., 1964, 29, 1276; (h) H. E. Zimmerman and L. Ahramjian, J. Am. Chem. Soc., 1959, 81, 2086 CrossRef CAS.
  21. Z. Paryzek and K. Blaszczyk, Liebigs Ann. Chem., 1993, 615 Search PubMed.
  22. For a tandem [2 + 2]–photo-benzannulation sequence, see reference 6(k).
  23. (a) F. Effenberger, P. Fischer, G. Prossel and G. Kiefer, Chem. Ber., 1971, 104, 1987 CAS; (b) A. Arduini, A. Bosi, A. Pochini and R. Ungaro, Tetrahedron, 1985, 41, 3095 CrossRef CAS.
  24. The following library of crystallographic programs was used: MITHRIL 83, C. J. Gilmore, University of Glasgow, Scotland (1983); PLUTO, W. D. S. Motherwell and W. Clegg, University of Cambridge, England (1978); a version of SDP V. 3, Enraf-Nonius, Delft, The Netherlands (1985) locally modiWed for a Sun Microsystems computer.
Click here to see how this site uses Cookies. View our privacy policy here.