Preparation, thermal stability and decomposition routes of clay/Triton-X100 composites

(Note: The full text of this document is currently only available in the PDF Version )

C. Breen, G. Thompson and M. Webb


Abstract

The adsorption isotherms for the octylphenol ethoxylate, TX100, onto a range of bentonites and a saponite have been determined and the resulting thermal stability of composites has been studied. In general TX100 exhibited a high affinity for the different clay surfaces although the maximum amount adsorbed varied with both clay type, layer charge density and resident exchange cation. XRD and variable temperature XRD showed that TX100 was adsorbed into the interlamellar region, and that the thermal stability of the clay/TX100 composite was dependent upon the exchangeable cation present. For monovalent cation exchanged clays (M+-clay/TX100) the TX100 decomposed between 220 and 300[thin space (1/6-em)]°C, and the d001 spacing decreased from 15.2 to 9.6 Å. In contrast, divalent cation exchanged clays imparted a greater thermal stability to the complex (M2+-clay/TX100) owing to coordination of adsorbed TX100 to the exchange cation, wherein weakly coordinated TX100 was stable to 270[thin space (1/6-em)]°C and strongly coordinated TX100 was held to temperatures in excess of 300[thin space (1/6-em)]°C. FTIR analysis of the gases evolved evolved during thermogravimetry confirmed that the octylphenol unit was desorbed from M2+-clay at temperatures below 400[thin space (1/6-em)]°C and that portions of the ethoxylate chain were held to 500[thin space (1/6-em)]°C.


References

  1. T. Austad and I. Fjelde, Colloids Surf. A: Physicochem. Eng. Asp., 1993, 81, 263 CrossRef CAS.
  2. T. Austad, SPE Intl. Symp. Oilfield Chem., New Orleans, 1993 SPE 25174, 235 Search PubMed.
  3. I. Carmona, R. S. Schechter and W. H. Wade, Soc. Pet. Eng. J., 1985, 351 Search PubMed.
  4. P. J. Shuler, D. L. Kuehne and R. M. Lerner, J. Pet. Technol., 1989, 80 Search PubMed.
  5. M. S. Aston and G. P. Elliot, 1994 SPE 28818, Europec, London.
  6. P. I. ReidB. DolanS. CliffeSPE Intl. Symp. Oilfield Chem., San Antonio 1995 SPE 29860 Search PubMed.
  7. C. R. Enyteart, in Nonionic Surfactants, Surfactant Science Series vol. 1, ed M. J. Schick, Marcel Dekker, New York, 1967, pp. 44–85 Search PubMed.
  8. M. J. Schick, in Nonionic Surfactants, Surfactant Science Series vol. 1, ed. M. J. Schick, Marcel Dekker, New York, 1967, pp. 971–996 Search PubMed.
  9. Z. Wang and M. Fingas, J. Chromatogr. Sci., 1993, 31, 509 CAS.
  10. B. K. G. Theng, Formation and Properties of Clay-Polymer Complexes, Elsevier, Amsterdam, 1979 Search PubMed.
  11. B. K. G. Theng, The Chemistry of Clay-Organic Reactions, Adam Hilger, London, 1974 Search PubMed.
  12. R. L. Parfitt and D. J. Greenland, Clay Miner., 1970, 8, 305 Search PubMed.
  13. R. L. Parfitt and D. J. Greenland, Clay Miner., 1970, 8, 317 Search PubMed.
  14. E. Ruiz-Hitzky and P. Aranda, Adv. Mater., 1990, 2, 545 CrossRef CAS.
  15. P. Aranda, J. C. Galvan, B. Gasal and E. Ruiz-Hitzky, Electrochim Acta, 1992, 37, 1573 CrossRef CAS.
  16. P. Aranda and E. Ruiz-Hitzky, Chem. Mater., 1992, 4, 1395 CrossRef CAS.
  17. P. Aranda and E. Ruiz-Hitzky, Acta Polym., 1994, 45, 59 CrossRef CAS.
  18. L. Lapcik, B. Alince and T. G. M. van de Ven, J. Pulp Pap. Sci., 1995, 21, J19 Search PubMed.
  19. J. Wu and M. M. Lerner, Chem. Mater., 1993, 5, 835 CrossRef CAS.
  20. T. Sobisch, Colloids Surf., 1992, 66, 11 CrossRef CAS.
  21. F. Giordano, R. Denoyel and J. Rouquerol, Colloids Surf. A: Physicochem. Eng. Asp., 1993, 71, 293 CrossRef CAS.
  22. J. Ghodbane and R. Denoyel, Colloids Surf. A: Physicochem. Eng. Asp., 1997, 127, 97 CrossRef CAS.
  23. P. Levitz and H. van Damme, J. Phys. Chem., 1984, 88, 2228 CrossRef CAS.
  24. P. Levitz and H. van Damme, J. Phys. Chem., 1986, 90, 1302 CrossRef CAS.
  25. T. C. G. Kibby and K. F. Hayes, J. Colloid Interface Sci., 1998, 197, 198 CrossRef.
  26. T. C. G. Kibby and K. F. Hayes, J. Colloid Interface Sci., 1998, 197, 210 CrossRef.
  27. D. M. Nevskaia, A. Guerrero-Ruiz and J. de D. Lopez-Gonzalez, J. Colloid Interface Sci., 1996, 181, 571 CrossRef CAS.
  28. D. M. Nevskaia, A. Guerrero-Ruiz and J. de D. Lopez-Gonzalez, J. Colloid Interface Sci., 1998, 205, 97 CrossRef CAS.
  29. P. Somasundaran, E. D. Snell, E. Fu and Q. Xu, Colloids Surf., 1992, 63, 49 CrossRef CAS.
  30. B. K. G. Theng, Clays Clay Miner., 1982, 30, 1 CAS.
  31. X. Zhao, K. Urano and S. Ogasaware, Colloid Polym. Sci., 1989, 267, 899 CAS.
  32. R. J. Robson and E. A. Dennis, J. Phys. Chem., 1977, 81, 1075 CrossRef CAS.
  33. H. L. Giles, P. W. Hurley and H. W. M. Webster, X-Ray Spectrom., 1995, 24, 204.
  34. G. Brown, B. Edwards, E. C. Ormerod and A. H. Weir, Clay Miner., 1972, 9, 407 Search PubMed.
  35. C. Breen, P. M. Last and M. Webb, Thermochim. Acta, 1999, 326, 151 CrossRef CAS.
  36. J. Cenens and R. A. Schoonheydt, Clays Clay Miner., 1988, 36, 214 CAS.
  37. L. Mercier and C. Detellier, Clays Clay Miner., 1994, 42, 71 CAS.
  38. C. Breen and R. Watson, J. Colloid Interface Sci., 1998, 208, 422 CrossRef CAS.
  39. R. Abe and H. Kuno, Kolloid Z, 1962, 181, 70 Search PubMed.
  40. C. Volzone, A. L. Cavalieri and J. Porto-Lopez, Mater. Res. Bull., 1988, 23, 545 CrossRef.
  41. D. Platinikov, A. Weiss and G. Lagaly, Colloid Polym. Sci., 1977, 255, 907.
  42. T. Lan and T. J. Pinnavaia, Chem. Mater., 1994, 6, 2216 CrossRef.
  43. H. Shi, T. Lan and T. J. Pinnavaia, Chem. Mater., 1996, 8, 1584 CrossRef CAS.
  44. M. Rosch, in Nonionic Surfactants, Surfactant Science Series vol. 1, ed. M. J. Schick, Marcel Dekker, New York, 1967, pp. 753–793 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.