Synthesis of zinc oxide nanoparticles with controlled morphology

(Note: The full text of this document is currently only available in the PDF Version )

Lingna Wang and Mamoun Muhammed


Abstract

A chemical precipitation method has been used for the synthesis of ZnO nanoparticles with controlled morphology. The precursor powders were prepared using several precipitation reagents and using ammonium carbamate as a precipitating reagent led to unusual rod-shape morphology. The precursor was decomposed by heating in air resulting in the formation of spherical or rod-like shapes of zinc oxide. A flow injection synthesis technique has been developed to synthesize nanophase particles of zinc oxide. The precursor and decomposed products were analyzed using IR, SEM, XRD and TGA techniques. The average size of the particles of ZnO obtained using the flow injection technique was approximately 20 nm while the crystallite size as measured from the X-ray pattern was 10–15 nm.


References

  1. A. S. Perl, Am. Ceram. Soc. Bull., 1990, 74, 780 .
  2. H. Rensmo, K. Keis, H. Lindström, S. Södergren, A. Solbrand, A. Hagfeldt, S.-E. Lindquist, L. N. Wang and M. Muhammed, J. Phys. Chem. B, 1997, 101, 2598 CrossRef CAS .
  3. H. E. Brown, Zinc oxide, International Lead Zinc Research Organization, Inc., New York, NY, 1976 Search PubMed .
  4. M. S. El-Shall, D. Graiver and U. Pernisz, NanoStruct. Mater., 1995, 6, 297 CrossRef CAS .
  5. M. Muhammed, Analusis, 1996, 24, M12 CAS .
  6. T. Liu, O. Sakurai, N. Mizutani and M. Kato, J. Mater. Sci., 1986, 21, 3698 CrossRef CAS .
  7. G. Westin and M. Nygren, J. Mater. Sci., 1992, 27, 1617 CAS .
  8. G. Westin, Å. Ekstrand, M. Nygren, R. Österlund and P. Merkelbach, J. Mater. Chem., 1994, 4, 615 RSC .
  9. E. A. Meulenkamp, J. Phys. Chem. B, 1998, 102, 5566 CrossRef CAS .
  10. B. Chiou, Y. J. Tsai and J. Duh, J. Mater. Sci. Lett., 1988, 7, 785 CAS .
  11. A. Packter and A. Derry, Cryst. Res. Technol., 1986, 21, 1281 CAS .
  12. M. E. V. Costa and J. L. Baptista, J. Eur. Ceram. Soc., 1993, 11, 275 CAS .
  13. T. Baird, K. C. Campbell, P. J. Holliman, R. W. Hoyle, D. Stirling, B. P. Williams and M. Morris, J. Mater. Chem., 1997, 7, 319 RSC .
  14. L. N. Wang, Y. Zhang and M. Muhammed, J. Mater. Chem., 1995, 5, 309 RSC .
  15. P. Ayyub, Indian J. Pure Appl. Phys., 1994, 32, 611 Search PubMed .
  16. L. T. Skeggs, Anal. Chem., 1966, 38, 31A CAS .
  17. E. H. Hansen and J. Ruzicka, J. Chem. Educ., 1979, 56, 677 CAS .
  18. M. F. Gine, H. Bergamin, E. A. G. Zagatto and B. F. Reis, Anal. Chem. Acta, 1980, 114, 191 Search PubMed .
  19. N. N. Greenwood and A. Earnshaw, Chemistry of the Elements, Pergamon, Oxford, 1984, p. 1403 Search PubMed .
  20. P. Schindler, M. Reinert and H. Gamsjäger, Helv. Chim. Acta, 1969, 52, 2327 CrossRef CAS .
  21. F. A. Carey, Organic Chemistry, McGraw-Hill, New York, 2nd edn., 1992, p. 832 Search PubMed .
  22. K. G. Tiller and J. G. Pickering, Clays Clay Miner., 1974, 22, 409 .
  23. G. Socrates, Infrared Characteristic Group Frequencies, Wiley, Chichester, 1980, p. 207 Search PubMed .
  24. K. Nakamoto, Infrared Spectra of Inorganic and Coordination Compounds, Wiley, New York, 1963, p. 169 Search PubMed .
  25. F. G. Sherif and F. A. Via, US Pat., 4 764 357, 1988, to Akzo America Inc  Search PubMed .
Click here to see how this site uses Cookies. View our privacy policy here.