Characterization of pores arising from spinodal phase separation in quenched sodium borosilicate glasses

(Note: The full text of this document is currently only available in the PDF Version )

Wei-Fang Du, Koji Kuraoka and Tetsuo Yazawa


Abstract

The characterization of pores arising from spinodal phase separation in quenched sodium borosilicate glasses is investigated. Theory predicts that the wavelength of the initial stage for spinodal phase separation on cooling is ca. 5–10 nm, whereas after acid leaching, the size of the pore based on so-called spinodal decomposition is much smaller with pores formed in quenched sodium borosilicate glass after leaching being of micropore type with radii of <1 nm. The acid leaching model proposed in the present study suggests that the characteristics of the pores in the quenched glass result from the small amplitude of the spinodal decomposition wave on cooling.


References

  1. T. Yazawa, Key Eng. Mater., 1996, 15, 125 Search PubMed.
  2. T. Kokubu and M. Yamane, J. Mater. Sci., 1985, 20, 4309 CAS.
  3. H. Maekawa, T. Maekawa, K. Kawamura and T. Yokokawa, J. Non-Cryst. Solids, 1991, 127, 53 CAS.
  4. T. Yazawa, H. Tanaka, K. Eguchi and S. Yokoyama, J. Mater. Sci., 1994, 29, 3433 CAS.
  5. H. Tanaka, T. Yazawa and K. Eguchi, et al., J. Non-Cryst. Solids, 1984, 65, 301 Search PubMed.
  6. K. Kuraoka, H. Tanaka and T. Yazawa, J. Mater. Sci. Lett., 1996, 15, 1 CAS.
  7. K. Kuraoka, Z. Qun, K. Kushibe and T. Yazawa, Sep. Sci. Technol., 1998, 33, 297 CAS.
  8. T. Yazawa, H. Tanaka, K. Eguchi, S. Yokoyama and T. Arai, J. Mater. Sci. Lett., 1993, 12, 263 CAS.
  9. T. Yazawa, H. Tanaka and K. Eguchi, J. Mater. Sci. Lett., 1993, 13, 494 CrossRef.
  10. T. Yazawa, A. Miyake and H. Tanaka, J. Ceram. Soc. Jpn., 1991, 99, 1094 CAS.
  11. T. Yazawa, H. Tanaka, H. Nakamichi and K. Eguchi, J. Ceram. Soc. Jpn., 1987, 95, 1186 CAS.
  12. T. Yazawa, H. Tanaka and K. Eguchi, J. Ceram. Soc. Jpn., 1988, 96, 630 CAS.
  13. T. Yazawa, H. Tanaka, H. Nakamichi and K. Eguchi, J. Ceram. Soc. Jpn., 1988, 96, 18 CAS.
  14. T. Yazawa, H. Tanaka and H. Nakamichi, et al., J. Ceram. Soc. Jpn., 1991, 99, 1271 Search PubMed.
  15. J. W. Cahn and J. E. Hilliard, J. Chem. Phys., 1959, 31, 688 CrossRef CAS.
  16. J. W. Cahn, J. Chem. Phys., 1965, 42, 93 CrossRef CAS.
  17. J. W. Cahn and R. J. Charles, Phys. Chem. Glasses, 1965, 6, 181 Search PubMed.
  18. M. Tomozawa, R. K. MacCrone and H. Herman, Phys. Chem. Glasses, 1970, 11, 136 Search PubMed.
  19. S. Brunauer, P. H. Emmett and E. Teller, J. Am. Chem. Soc., 1938, 60, 309 CrossRef CAS.
  20. R. S. Mikhail, S. Brunauer and E. E. Bodor, J. Colloid Interface Sci., 1968, 26, 45 CrossRef CAS.
  21. IUPAC Manual of Symbols and Terminology, Appendix 2, Pure Appl. Chem., 1972, 31, 578 Search PubMed.
  22. D. Dollimore and T. Shingles, J. Appl. Chem., 1969, 19, 218 Search PubMed.
  23. R. G. Avery and J. D. F. Ramsay, J. Colloid Interface Sci., 1973, 42, 597 CrossRef.
  24. C. G. Shull, J. Am. Chem. Soc., 1948, 70, 1410 CrossRef CAS.
  25. F. A. L. Dullien and G. K. Dhawan, J. Colloid Interface Sci., 1974, 47, 337 CrossRef.
  26. A. A. Liabastre and C. Orr, J. Colloid Interface Sci., 1978, 64, 1 CAS.
  27. A. Lecloux and J. P. Pirard, J. Colloid Interface Sci., 1979, 70, 265 CrossRef CAS.
  28. F. A. Putnam and T. Fort, J. Phys. Chem., 1975, 79, 459 CrossRef CAS.
  29. S. J. Gregg and K. S. W. Sing, Adsorption, Surface Area and Porosity, Academic Press Inc., New York, 1982 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.