Electronic structure and stability of the LixMn2O4 (0 < x < 2) system

(Note: The full text of this document is currently only available in the PDF Version )

Helena Berg, Kenneth Göransson, Bengt Noläng and John O. Thomas


Abstract

LMTO-ASA self-consistent band structure calculations have been performed for the cubic spinel LiMn2O4 and its delithiated and lithiated phases: λ-MnO2 and Li2Mn2O4. It has been shown that the Jahn–Teller distortion plays a vital rôle in the stabilisation of the Li2Mn2O4 phase. The influence on the band structure of different possible positions for the lithium ions is investigated, and the phase transition from cubic to tetragonal symmetry for Li2Mn2O4 discussed. The change in potential associated with the insertion of lithium ions into λ-MnO2 to form LiMn2O4 and Li2Mn2O4 has been calculated as 1.51 V and 1.16 V, respectively. The lithium atoms are ionised by contributing substantial character to the bonding band. However, the charge transfer is small and the electron density around the lithium ions is higher than in lithium metal.


References

  1. M. G. S. R. Thomas, W. I. F. David, J. B. Goodenough and P. Groves, Mater. Res. Bull., 1985, 20, 1137 CrossRef CAS.
  2. C. Delmas, H. Cognac-Auradon, J. M. Cocciantelli, M. Ménétrier and J. P. Doumerc, Solid State Ionics, 1994, 69, 257 CrossRef CAS.
  3. Ö. Bergström, Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, No. 336, Uppsala University, 1998 Search PubMed.
  4. A. R. Armstrong and P. G. Bruce, Nature (London), 1996, 381, 499 CrossRef CAS.
  5. M. Broussely, F. Perton, J. Labat, R. J. Staniewicz and A. Romero, J. Power Sources, 1993, 43–44, 209 CrossRef.
  6. Y. Gao and J. R. Dahn, J. Electrochem. Soc., 1996, 143, 100 CAS.
  7. H. Berg, W. Liu, G. C. Farrington and J. O. Thomas, Solid State Ionics, 1998, 112, 167.
  8. G. Pistoia and G. Wang, Solid State Ionics, 1993, 66, 135 CrossRef.
  9. M. M. Thackeray, A. de Kock, M. H. Rossouw, D. Liles, R. Bittihn and D. Hoge, J. Electrochem. Soc., 1992, 139, 363 CAS.
  10. T. Ohzuku, M. Kitagawa and T. Hirai, J. Electrochem. Soc., 1990, 137, 769 CAS.
  11. W. Y. Liang, Microionics—Solid State Integrable Batteries, ed. M. Balkanski, North-Holland, Amsterdam, 1991, pp. 237–251 Search PubMed.
  12. C. Julien and M. Balkanski, Solid State Ionics III, ed. G. A. Nazri, J. M. Tarascon and M. Armand, MRS Symposium Proceedings No. 293, Materials Research Society, Pittsburgh, PA, 1993, pp. 27–37 Search PubMed.
  13. J. Friedel, Adv. Phys., 1954, 3, 446.
  14. D. J. Sellmeyer, Solid State Physics: Advances in Research and Applications, ed. H. Ehrenreich, F. Seitz and D. Turnbull, Academic, New York, 1978, vol. 33, p. 83 Search PubMed.
  15. J. V. McCanny, J. Phys. C, 1979, 12, 3263 CrossRef CAS.
  16. C. Umrigar, D. E. Ellis, D. S. Wang, H. Krakauer and M. Posternak, Phys. Rev. B, 1982, 26, 4935 CrossRef CAS.
  17. G. Y. Guo and W. Y. Liang, J. Phys. C, 1987, 20, 4315 CrossRef CAS.
  18. M. K. Aydinol, A. F. Kohan, G. Ceder, K. Cho and J. Joannopoulos, Phys. Rev. B, 1997, 56, 1354 CrossRef CAS.
  19. M. K. Aydinol and G. Ceder, J. Electrochem. Soc., 1997, 144, 3832 CAS.
  20. M. M. Thackeray, W. I. F. David, P. G. Bruce and J. B. Goodenough, Mater. Res. Bull., 1983, 18, 461 CrossRef CAS.
  21. J. C. Hunter, J. Solid State Chem., 1981, 39, 142 CrossRef CAS.
  22. O. K. Andersen, Phys. Rev. B, 1975, 12, 3060 CrossRef CAS.
  23. H. L. Skriver, The LMTO Method, Springer Series in Solid State Science, vol. 41, Springer, Berlin, 1984 Search PubMed.
  24. R. D. Shannon and C. T. Prewitt, Acta Crystallogr., Sect. B., 1969, 25, 925 CrossRef CAS.
  25. S. Chitra, P. Kalyani, T. Mohan, M. Massot, S. Ziolkiewicz, R. Ganganharan, M. Eddrief and C. Julien, Ionics, 1998, 4, 8 Search PubMed.
  26. H. Berg and J. O. Thomas, Solid State Ionics, in press Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.