Formation of uniform size anatase nanocrystals from bis(ammonium lactato)titanium dihydroxide by thermohydrolysis

(Note: The full text of this document is currently only available in the PDF Version )

Hermann Möckel, Michael Giersig and Frank Willig


Abstract

Bis(ammonium lactato)titanium dihydroxide decomposes in neutral aqueous solution at temperatures above 100[thin space (1/6-em)]°C to produce anatase nanocrystals of preferentially oblate habitus, and with a very narrow size distribution. There is almost no dependence of size on precursor concentration, and a time dependence is observed only in the very beginning of crystal growth. The crystal size is mainly determined by the reaction temperature, increasing from ca. 2 nm at 120[thin space (1/6-em)]°C to about 20 nm at 300[thin space (1/6-em)]°C. We assume the temperature dependent formation of a layer of byproduct ammonium lactate at the crystallite surface where it interferes with growth reactions. After removal of this layer, continued heating yields larger crystallites in typical anatase shapes, indicating that Ostwald ripening has now become effective.


References

  1. E. Matijevic, M. Budnik and L. Meites, J. Colloid Interface Sci., 1977, 61, 302 CrossRef CAS.
  2. E. A. Barringer and H. K. Bowen, J. Am. Ceram. Soc., 1982, 65, C199 CAS.
  3. B. E. Yoldas, J. Mater. Sci., 1986, 21, 1087 CAS.
  4. M. A. Anderson, M. J. Gieselmann and Q. J. Xu, J. Membr. Sci., 1988, 392, 43.
  5. J. Livage and C. Sanchez, J. Non-Cryst. Solids, 1992, 145, 11 CAS.
  6. Q. Xu and M. A. Anderson, J. Mater. Res., 1991, 6, 1073 CAS.
  7. J. L. Look and C. F. Zukoski, J. Am. Ceram. Soc., 1995, 78, 21 CAS.
  8. J. Blanchard, S. Barboux-Doeff, J. Maquet and C. Sanchez, New J. Chem., 1995, 19, 929 Search PubMed.
  9. J. Blanchard, M. In, B. Schaudel and C. Sanchez, Eur. J. Inorg. Chem., 1989, 8, 1115 Search PubMed.
  10. J. Blanchard, C. Bonhomme, J. Maquet and C. Sanchez, J. Mater. Chem., 1998, 8, 985 RSC.
  11. A. Hanprasopwattana, T. Rieker, A. G. Sault and A. K. Datye, Catal. Lett., 1997, 45, 165 CrossRef CAS.
  12. K. LawrenceUS Patent 4692273, 1998 Search PubMed.
  13. S. Baskaran, L. Song, J. Liu, Y. I. Chen and G. L. Graff, J. Am. Ceram. Soc., 1998, 81, 401 CAS.
  14. H. J. Möckel, D. Hermann and F. Willig, in preparation.
  15. H. Kunath, F. Zemlin and K. Weiss, Optik, 1987, 76, 122 Search PubMed.
  16. D. C. Bradley, R. C. Mehrotra and D. P. Gaur, Metal Alkoxides, Academic Press, New York, 1978 Search PubMed.
  17. S. Doeff, M. Henry, C. Sanchez and J. Livage, J. Non-Cryst. Solids, 1987, 89, 206 CAS.
  18. L. Livage, in Better Ceramics through Chemistry II, ed. C. J. Brinker, D. E. Clark and D. R. Ulrich, Materials Research Society, Pittsburgh, PA, 1986, vol. 73, p. 717 Search PubMed.
  19. C. Sanchez, J. Livage, M. Henry and F. Babonneau, J. Non-Cryst. Solids, 1988, 100, 65 CrossRef CAS.
  20. G. D. Parfitt, in Progress in Surface and Membrane Science, ed. D. A. Cadenhead and J. F. Danielli, Academic Press, New York, 1978, vol. 11, p. 181 Search PubMed.
  21. T. Awatani, K. D. Dobson, A. J. McQuillan, B. Ohtani and K. Uosaki, Chem. Lett., 1998, 8, 849 CrossRef.
  22. T. J. Bastow, A. F. Moodie, M. E. Smith and H. J. Whitfield, J. Mater. Chem., 1993, 3, 697 RSC.
  23. D. W. Bahnemann, Isr. J. Chem., 1993, 33, 115 CAS.
  24. O. B. Pavlova-Verevkina, Y. E. Roginskaya, G. V. Lopukhova and A. V. Pertsov, Colloid J., 1996, 58, 755 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.