Synthesis and photoelectrochemical properties of a fullerene–azothiophene dyad

(Note: The full text of this document is currently only available in the PDF Version )

Sandro Cattarin, Paola Ceroni, Dirk M. Guldi, Michele Maggini, Enzo Menna, Francesco Paolucci, Sergio Roffia and Gianfranco Scorrano


Abstract

In this paper we describe the synthesis, electrochemistry and photophysical behavior of a fullerene-based donor–acceptor dyad (2) in which the donor unit is an azothiophene dye. Dyad 2, prepared in one step starting from C60, commercially available N-methylglycine and thienylazobenzeneamine 1, can be selectively excited in the visible region where the dye has an absorption maximum at 567 nm. Implementation of electrochemical and photophysical data reveals that both intramolecular energy- and electron-transfer are thermodynamically feasible processes. Steady-state luminescence of dyad 2 in CH2Cl2 shows a quenching of the dye singlet excited state (1dye*) and evidence of the fullerene singlet excited state (1C60*) emission. Flash-photolytic experiments, on the other hand, exhibit characteristic differential absorption changes attributed to the C60·–dye·+ charge-separated state. Interestingly, it has been estimated that the energy difference between 1C60* and the charge separated state is very small, leading to the hypothesis that a rapid exchange between the two states occurs. Sensitization of TiO2 with dyad 2 and model compound 3 is also reported and discussed.


References

  1. Fullerenes and Related Structures, Ed. A. Hirsch, Series: Topics in Current Chemistry, Springer-Verlag, Berlin/Heidelberg, 1998, Vol. 199 Search PubMed.
  2. A. W. Jensen, S. R. Wilson and D. I. Schuster, Bioorg. Med. Chem., 1996, 4, 767 CrossRef CAS.
  3. M. Prato, J. Mater. Chem., 1997, 7, 1097 RSC.
  4. C. S. Foote, Top. Curr. Chem., 1994, 169, 347 CAS.
  5. (a) H. Imahori and Y. Sakata, Adv. Mater., 1997, 9, 537 CAS; (b) N. Martin, L. Sanchez, B. Illescas and I. Perez, Chem. Rev., 1998, 98, 2527 CrossRef CAS; (c) J. F. Nierengarten, C. Schall and J. F. Nicoud, Angew. Chem., Int. Ed. Engl., 1998, 37, 1934 CrossRef CAS; (d) M. Maggini, D. M. Guldi, S. Mondini, G. Scorrano, F. Paolucci, P. Ceroni and S. Roffia, Chem. Eur. J., 1998, 4, 1992 CrossRef CAS; (e) E. Dietel, A. Hirsch, E. Eichhorn, A. Rieker, S. Hackbarth and B. Roder, Chem. Commun., 1998, 21, 1981 RSC; (f) D. M. Guldi, G. Torres Garcia and J. Mattay, J. Phys. Chem., 1998, 102, 9679 Search PubMed; (g) S. Higashida, H. Imahori, T. Kaneda and Y. Sakata, Chem. Lett., 1998, 7, 605 CrossRef; (h) K. Tamaki, H. Imahori, Y. Nishimura, I. Yamazaki and Y. Sakata, Chem. Commun., 1999, 7, 625 RSC; (i) K. Tamaki, H. Imahori, Y. Nishimura, I. Yamazaki, A. Shimomura, T. Okada and Y. Sakata, Chem. Lett., 1999, 3, 227 CrossRef; (j) J. F. Nierengarten, J. F. Eckert, J. F. Nicoud, L. Ouali, V. Krasnikov and G. Hadziioannou, Chem. Commun., 1999, 7, 617 RSC; (k) N. Armaroli, F. Diederich, L. Echegoyen, T. Habicher, L. Flamigni, G. Marconi and J. F. Nierengarten, New J. Chem., 1999, 23, 77 RSC; (l) A. Polese, S. Mondini, A. Bianco, C. Toniolo, G. Scorrano, D. M. Guldi and M. Maggini, J. Am. Chem. Soc., 1999, 121, 3446 CrossRef CAS; (m) P. Cheng, S. R. Wilson and D. I. Schuster, Chem. Commun., 1999, 7, 89 RSC; (n) T. Da-Ros, M. Prato, D. Guldi, E. Alessio, M. Ruzzi and L. Pasimeni, Chem. Commun., 1999, 7, 635 RSC; (o) S.-J. Liu, L. Shu, J. Rivera, H. Liu, J.-M. Raimundo, J. Roncali, A. Gorgues and L. Echegoyen, J. Org. Chem., 1999, 64, 4884 CrossRef CAS.
  6. N. S. Sariciftci, L. Smilowitz, A. J. Heeger and F. Wudl, Science, 1992, 258, 1474 CrossRef CAS.
  7. The azothiophene chromophore was used, instead of the more conventional azobenzenes, mainly because aldehyde 1, precursor to fulleropyrrolidine 2, was readily available from BASF-AG (see Experimental section).
  8. A. Hagfeldt and M. Grätzel, Chem. Rev., 1995, 95, 49 CrossRef CAS.
  9. P. Bonhôte, J.-E. Moser, R. Humphry-Baker, N. Vlachopoulos, S. M. Zakeeruddin, L. Walder and M. Grätzel, J. Am. Chem. Soc., 1999, 121, 1324 CrossRef CAS.
  10. C. Luo, C. Huang, L. Gan, D. Zhou, W. Xia, Q. Zhuang, Y. Zhao and Y. Huang, J. Phys. Chem., 1996, 100, 16 685 CrossRef CAS.
  11. G. Franco, J. Gehring, L. M. Peter, E. A. Ponomarev and I. Uhlendorf, J. Phys. Chem. B, 1999, 103, 692 CrossRef CAS.
  12. A. Bianco, M. Maggini, G. Scorrano, C. Toniolo, G. Marconi, C. Villani and M. Prato, J. Am. Chem. Soc., 1996, 118, 4072 CrossRef CAS.
  13. D. Guldi, M. Maggini, G. Scorrano and M. Prato, J. Am. Chem. Soc., 1997, 119, 974 CrossRef CAS.
  14. M. Maggini, G. Scorrano and M. Prato, J. Am. Chem. Soc., 1993, 115, 9798 CrossRef CAS.
  15. M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Müller, P. Liska, N. Vlachopoulos and M. Grätzel, J. Am. Chem. Soc., 1993, 115, 6382 CrossRef CAS.
  16. J. C. Hummelen, B. Knight, J. Pavlovich, R. Gonzalez and F. Wudl, Science, 1995, 269, 1554 CrossRef CAS.
  17. E. L. Yee, R. J. Cave, K. L. Guyer, P. D. Tyma and M. J. Weaver, J. Am. Chem. Soc., 1979, 101, 1131 CrossRef CAS.
  18. N. Vlachopoulos, P. Liska, J. Augunstinski and M. Grätzel, J. Am. Chem. Soc., 1988, 110, 1216 CrossRef CAS.
  19. M. Prato and M. Maggini, Acc. Chem. Res., 1998, 31, 519 CrossRef CAS.
  20. This assignment stems primarily from i) the larger potential separation between peak IV and its anodic counterpart relative to peaks I–III (230 mV vs. 90 mV) and V–VI, and ii) the analysis of peak IV characteristics upon variation of the scan rate (up to a scan rate of 100 V s–1).
  21. J. P. Stradins and V. T. Glezer, in Encyclopedia of Electrochemistry of the Elements, Organic Section, Ed. A. J. Bard and H. Lund, Marcel Dekker, Inc., New York, 1979, Vol. XIII, p. 163 Search PubMed.
  22. J. Roncali, Chem. Rev., 1992, 92, 711 CrossRef CAS.
  23. M. G. Hutchings, P. Gregory, J. S. Campbell, A. Strong, J.-P. Zamy, A. Lepre and A. Mills, Chem. Eur. J., 1997, 3, 1719 CAS.
  24. The azobenzene moiety is known to undergo trans–cis isomerization. However, for the dye 3 no photochemical reaction was observed upon excitation both in the visible and in the UV spectral region.
  25. The fluorescence spectrum of 2 at 77 K shows both the dye- and the fullerene-based emission.
  26. The energy of the CS state (ΔG0CS) in CH2Cl2 was estimated using the dielectric continuum model. This model accounts for two spherical ions with radii RA(C60) and RD(dye) separated by a distance RDA immersed in a dielectric continuum with relative permittivity ε(εdichloromethane= 8.93). The center-to-center distance RDA= 11.8 Å was obtained from PM3 semiempirical calculations. The standard potentials for oxidation [dye+/dye] and reduction (C60/C60) processes in CH2Cl2, reported in Table 1 and E0-0 value of 1.97 eV relative to 1dye* state were used in the calculations. (a) A. Z. Weller, Phys. Chem. (Wiesbaden), 1982, 93, 1982 Search PubMed; (b) H. Imahori, K. Hagiwara, M. Aoki, T. Akiyama, S. Taniguchi, T. Okada, M. Shirakawa and Y. Sakata, J. Am. Chem. Soc., 1996, 118, 11 771 CrossRef CAS; (c) S. I. van Dijk, C. P. Groen, F. Hartl, A. Brouwer and J. W. Verhoeven, J. Am. Chem. Soc., 1996, 118, 8425 CrossRef CAS.
  27. The spectral features of the charge-separated radical pair and the lifetime of the latter resembled those observed upon the dye excitation (535 nm).
  28. Analogously, radiation-induced reduction of dyad 2 in toluene–propan-2-ol–acetone solution resulted in a distinct NIR absorption at 1010 nm.
  29. Q. Xie, F. Arias and L. Echegoyen, J. Am. Chem. Soc., 1993, 115, 9818 CrossRef CAS.
  30. A. Wahl, M. Ulmann, A. Carroy, B. Jermann, M. Dolata, P. Kedzierzawski, C. Chatelain, A. Monnier and J. Augusynsky, J. Electroanal. Chem., 1995, 396, 41 CrossRef CAS.
  31. R. Dabestani, A. J. Bard, A. Campion, M. A. Fox, T. E. Mallouk, S. E. Webber and J. M. White, J. Phys. Chem., 1988, 92, 1872 CrossRef CAS.
  32. G. K. Boschloo and A. Goossens, J. Phys. Chem., 1996, 100, 19 489 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.