A Monte Carlo analysis of spin dynamics and Mössbauer relaxation in 2-D magnetically diluted iron oxides

(Note: The full text of this document is currently only available in the PDF Version )

Terence C. Gibb


Abstract

The spin dynamics of two-dimensional magnetically diluted iron oxides with the K2NiF4 structure has been studied by a Monte Carlo analysis using a simple Ising model. Below the critical temperature, antiferromagnetic domains are formed in which the domain walls are ‘pinned’ by the non-magnetic atoms such that increasing dilution causes substantial interpenetration of the domains. The magnetic hysteresis observed in field-cooled and zero-field-cooled magnetic measurements on SrLaFeO4 diluted with a non-magnetic cation can be explained. Similarly, the observed Mössbauer relaxation can be simulated, and derives from differing relaxation rates for spins with few near neighbour spins, particularly those close to a domain boundary. The existence of ‘spin clusters’ which has often been assumed is not a good model. It is suggested that Ising-like behaviour in the critical region is an important aspect of these diluted Heisenberg layered systems.


References

  1. R. Rodríguez, A. Fernández, A. Isalgué, J. Rodriguez, A. Labarta, T. Tejada and X. Obradors, J. Phys. C: Solid State Phys., 1985, 18, L401 CrossRef CAS.
  2. P. D. Battle, T. C. Gibb, C. W. Jones and F. Studer, J. Solid State Chem., 1989, 78, 281 CrossRef CAS.
  3. T. C. Gibb, J. Mater. Chem., 1992, 2, 415 RSC.
  4. T. C. Gibb and R. J. Whitehead, J. Mater. Chem., 1993, 3, 591 RSC.
  5. T. C. Gibb, A. J. Herod, S. J. Lees and P. D. Battle, J. Mater. Chem., 1995, 5, 285 RSC.
  6. Y. Ishikawa, J. Phys. Soc. Jpn, 1962, 17, 1835, 1877 Search PubMed.
  7. M. Schlenker, J. Baruchel and Y. Souche, New trends in magnetism, magnetic materials, and their applications, eds. J. L. Morán-López and J. M. Sanchez, Plenum Press, New York, 1994, p. 307 Search PubMed.
  8. H. Gould and J. Tobochnik, An Introduction to Computer Simulation Methods, 2nd edn., Addison Wesley, London, 1996 Search PubMed.
  9. A. R. Bortz, M. H. Kalos and J. L. Lebowitz, J. Comput. Phys., 1975, 17, 10 CrossRef.
  10. D. Stauffer and A. Aharony, Introduction to Percolation Theory, 2nd edn., Taylor and Francis, London, 1991 Search PubMed.
  11. G. J. Grest and D. J. Srolovitz, Phys. Rev. B, 1985, 32, 3014 CrossRef.
  12. G. J. Grest, C. M. Soukoulis and K. Levein, Phys. Rev. B, 1986, 33, 7659 CrossRef.
  13. U. Nowak and K. D. Usadel, Phys. Rev. B, 1989, 39, 2516 CrossRef.
  14. U. Nowak and K. D. Usadel, Phys. Rev. B, 1991, 44, 7426 CrossRef.
  15. U. Nowak and K. D. Usadel, Phys. Rev. B, 1991, 43, 851 CrossRef.
  16. U. Nowak and K. D. Usadel, Phys. Rev. B, 1992, 46, 8329 CrossRef.
  17. J. Esser, U. Nowak and K. D. Usadel, Phys. Rev. B, 1997, 55, 5866 CrossRef CAS.
  18. M. Staats, U. Nowak and K. D. Usadel, J. Magn. Magn. Mater., 1998, 177–181, 85 CrossRef CAS.
  19. L. J. de Jongh and A. R. Meidema, Adv. Phys., 1974, 23, 1 CAS.
  20. M. E. Lines, J. Appl. Phys., 1969, 40, 1352 CrossRef.
  21. J. L. Soubeyroux, P. Courbin, L. Fournes, D. Fruchart and G. Le Flem, J. Solid State Chem., 1980, 31, 313 CrossRef CAS.
  22. M. Shimada, M. Koizumi, M. Takano, T. Shinjo and M. Takada, J. Phys., Colloq. C2, 1979, 40, C2–272 Search PubMed.
  23. C. Dekker, A. F. M. Arts, H. W. de Wijn and J. K. Kjens, Phys. Rev., 1987, 35, 7157 Search PubMed.
  24. R. A. Cowley, G. Shirane, R. J. Birgenau and H. J. Guggenheim, Phys. Rev. B, 1977, 15, 4292 CrossRef CAS.
  25. R. J. Birgenau, R. A. Cowley, G. Shirane, J. A. Tarvin and H. J. Guggenheim, Phys. Rev. B, 1980, 21, 317 CrossRef.
  26. H. Keller and I. M. Savie, Phys. Rev. B, 1983, 28, 2638 CrossRef CAS.
  27. B. J. Dikken, A. F. M. Arts, H. W. de Wijn, W. A. H. M. Vlakand and E. Frikkee, Phys. Rev. B, 1985, 32, 5600 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.