Application of percolation concepts to electrical conductivity of polyaniline–inorganic salt composites

(Note: The full text of this document is currently only available in the PDF Version )

Ivo Křivka, Jan Prokeš, Eva Tobolková and Jaroslav Stejskal


Abstract

The dependence of the resistivity of protonated polyaniline–inorganic salt composites with the volume fraction of electrically conducting component was analyzed on the basis of percolation theory. A short analysis and a discussion of basic treatment in the evaluation of percolation parameters are included. Microscopical observations showed a non-uniform distribution of polyaniline particles in the composites. The composites of polyaniline sulfate with ammonium sulfate and potassium bromide have a low percolation threshold (<3 vol.% conducting component). This has been explained as a property of the segregated structure of the composites, which is formed because of a large difference in the particle sizes. Basic quantitative characteristics of the morphological structure have been obtained using the percolation model, as proposed by Ewen and Robertson, to explain the properties of thick film resistors.


References

  1. A. G. MacDiarmid and A. J. Epstein, Faraday Discuss. Chem. Soc., 1989, 88, 317 RSC.
  2. D. C. Trivedi, in Handbook of Organic Conductive Molecules and Polymers, ed. H. S. Nalwa, Wiley, Chichester, 1997, vol. 2, p. 505 Search PubMed.
  3. S. F. Lascelles and S. P. Armes, J. Mater. Chem., 1997, 7, 1339 RSC.
  4. L. Terlemezyan, M. Mihailov and B. Ivanova, Polym. Bull., 1992, 29, 283 CAS.
  5. M. Morita and I. Hashida, J. Appl. Polym. Sci., 1990, 41, 1073 CAS.
  6. A. Deschamps, J.-P. Lagier, F. Fievet, S. Aeiyach and P.-C. Lacaze, J. Mater. Chem., 1992, 2, 1213 RSC.
  7. S. Dogan, U. Akbulut and L. Toppare, Synth. Met., 1992, 53, 29 CAS.
  8. Y. H. Park, S. H. Choi, S. K. Song and S. Miyata, J. Appl. Polym. Sci., 1992, 45, 843 CAS.
  9. J. Yang, C. Zhao, D. Cui, J. Hou, M. Wan and M. Xu, J. Appl. Polym. Sci., 1995, 56, 831 CAS.
  10. S. P. Armes, S. Gottesfeld, J. G. Beery, F. Garzon, C. Mombourquette, M. Hawley and H. H. Kuhn, J. Mater. Chem., 1991, 1, 525 RSC.
  11. D. C. Trivedi and S. K. Dhawan, Synth. Met., 1993, 59, 267 CAS.
  12. N. Gospodinova, L. Terlemezyan, P. Mokreva, J. Stejskal and P. Kratochvíl, Eur. Polym. J., 1993, 29, 1305 CrossRef CAS.
  13. J. Stejskal, P. Kratochvíl, S. P. Armes, S. F. Lascelles, A. Riede, M. Helmstedt, J. Prokeš and I. Křivka, Macromolecules, 1996, 29, 6814 CrossRef CAS.
  14. S. P. Armes, in Handbook of Conducting Polymers, ed. R. L. Elsenbaumer, J. R. Reynolds and T. A. Skotheim, Marcel Dekker, New York, 1997, vol. 2, ch. 17, p. 423 Search PubMed.
  15. A. Riede, M. Helmstedt, V. Riede and J. Stejskal, Langmuir, 1998, 14, 6767 CrossRef CAS.
  16. P. Banerjee, Eur. Polym. J., 1998, 34, 841 CrossRef CAS.
  17. J. Prokeš, I. Křivka and J. Stejskal, Polym. Int., 1997, 43, 117 CrossRef CAS.
  18. O. Quadrat, J. Stejskal, C. Klason, J. Kubát and D. H. McQueen, J. Phys.: Condens. Matter, 1995, 7, 3287 CrossRef CAS.
  19. M. Ghosh, A. Barman, S. K. De and S. Chaterjee, Solid State Commun., 1997, 103, 629 CrossRef CAS.
  20. P. Banerjee and B. M. Mandal, Synth. Met., 1995, 74, 257 CrossRef CAS.
  21. P. Banerjee and B. M. Mandal, Macromolecules, 1995, 28, 3940 CrossRef CAS.
  22. J. Stejskal, M. Špírková, O. Quadrat and P. Kratochvíl, Polym. Int., 1997, 44, 283 CrossRef CAS.
  23. J. Wojturski, J. Stejskal, O. Quadrat and P. Kratochvíl, Croat. Chem. Acta, 1998, 71, 873 Search PubMed.
  24. B. J. Last and D. J. Thouless, Phys. Rev. Lett., 1971, 27, 1719 CrossRef CAS.
  25. D. Adler, L. P. Flora and S. D. Senturia, Solid State Commun., 1973, 12, 9 CrossRef CAS.
  26. S. Kirkpatrick, Rev. Mod. Phys., 1973, 45, 574 CrossRef.
  27. H. Scher and R. Zallen, J. Chem. Phys., 1970, 53, 3759 CAS.
  28. B. Derrida, D. Stauffer, H. J. Herrmann and J. Vannimenus, J. Phys. Lett., 1983, 44, L701 Search PubMed.
  29. I. Balberg and N. Binenbaum, Phys. Rev. B: Condens. Matter, 1987, 35, 8749 CrossRef.
  30. R. Kužel, I. Křivka, J. Kubát, J. Prokeš, S. Nešpůrek and C. Klason, Synth. Met., 1994, 67, 255 CAS.
  31. A. Malliaris and D. T. Turner, J. Appl. Phys., 1971, 42, 614 CAS.
  32. D. S. McLachlan, J. Appl. Phys., 1991, 70, 3681 CrossRef.
  33. L. D'Ilario and A. Martinelli, J. Mater. Sci. Lett., 1991, 10, 1465 CAS.
  34. P. J. S. Ewen and J. M. Robertson, J. Phys. D: Appl. Phys., 1981, 14, 2253 CrossRef CAS.
  35. A. Kubový, J. Phys. D: Appl. Phys., 1986, 19, 2171 CrossRef CAS.
  36. A. Kusy and A. Kolek, Physica A, 1989, 157, 130 CrossRef.
  37. W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery, Numerical Recipes in C: The Art of Scientific Computing, Cambridge University Press, New York, 1992 Search PubMed.
  38. J. Stejskal, A. Riede, D. Hlavatá, J. Prokeš, M. Helmstedt and P. Holler, Synth. Met., 1998, 96, 55 CrossRef CAS.
  39. L. J. van der Pauw, Philips Res. Rep., 1958, 13, 1 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.