Facile synthesis of new NLO-functionalized polyimides via Mitsunobu reaction

(Note: The full text of this document is currently only available in the PDF Version )

Chong-Bok Yoon and Hong-Ku Shim


Abstract

Three polyimides containing a nonlinear optical (NLO) chromophore were prepared through a new synthetic pathway. Coupling of dihydroxy and diimide compounds yielded the polyimide. Due to the mild conditions of polymerization, a chemically labile hemicyanine dye could be incorporated in the polyimide backbone successfully. The molecular weights of the polyimides obtained ranged from 8200 to 14[thin space (1/6-em)]400, and the glass transitions occurred between 135[thin space (1/6-em)]°C and 198[thin space (1/6-em)]°C. The second-order NLO properties were characterized by using the second harmonic generation (SHG) technique. The second-order NLO coefficients (χ(2)) of the polyimides were 82 pm V–1 and 122 pm V–1 with reference to quartz crystal, and the nonlinearity of those polymers was stable at 100[thin space (1/6-em)]°C without large loss.


References

  1. P. N. Prasad and D. J. Williams, in Introduction of Nonlinear Optical Effect in Molecules and Polymers, John Wiley & Sons, New York, 1991 Search PubMed.
  2. D. S. Chemla, in Nonlinear Optical Properties of Organic Materials and Crystals, ed. J. Zyss, Academic Press, New York, 1987 Search PubMed.
  3. S. R. Marder, B. Kippenlen, A. K.-Y. Jen and N. Pheyghambarian, Nature, 1997, 388, 845 CrossRef CAS.
  4. G. A. Lindsay and K. D. Singer, in Polymers for Second-order Nonlinear Optics, American Chemical Society, Washington, DC, 1995 Search PubMed.
  5. D. M. Burland, R. D. Miller and C. A. Walsh, Chem. Rev., 1994, 94, 31 CrossRef CAS.
  6. C. B. Yoon and H. K. Shim, Macromol. Chem. Phys., 1998, 199, 2433 CrossRef CAS.
  7. R. Dagani, Chem. Eng. News, 1996, 74, 22.
  8. C. B. Yoon, K. J. Moon and H. K. Shim, Macromolecules, 1996, 29, 5754 CrossRef CAS.
  9. L. R. Dalton, A. W. Harper, R. Ghosn, W. H. Steier, M. Ziari, H. Fetterman, Y. Shi, R. V. Mustacich, A. K.-Y. Jen and K. J. Shea, Chem. Mater., 1995, 7, 1060 CrossRef CAS.
  10. T. Verbiest, D. M. Burland, M. C. Jurich, V. Y. Lee, R. D. Miller and W. Volksen, Science, 1995, 268, 1604 CAS.
  11. T. Verbiest, D. M. Burland, M. C. Jurich, V. Y. Lee, R. D. Miller and W. Volksen, Macromolecules, 1995, 28, 3005 CrossRef CAS.
  12. D. Yu and L. Yu, Macromolecules, 1994, 27, 6718 CrossRef CAS.
  13. T. A. Chen, A. K.-Y. Jen and Y. Cai, J. Am. Chem. Soc., 1995, 117, 7295 CrossRef CAS.
  14. K. S. Lee, K. J. Moon, H. Y. Woo and H. K. Shim, Adv. Mater., 1997, 9, 978 CrossRef CAS.
  15. O. Mitsunobu, Synthesis, 1981, 1 CrossRef CAS.
  16. O. K. Kim and L. S. Choi, Langmuir, 1994, 10, 2842 CrossRef CAS.
  17. K. J. Moon, H. K. Shim, K. S. Lee, J. Zieba and P. N. Prasad, Macromolecules, 1996, 29, 861 CrossRef CAS.
  18. K. S. Lee, S. W. Choi, H. Y. Woo, K. J. Moon, H. K. Shim, M. Jeong and T. K. Lim, J. Opt. Soc. Am. B Opt. Phys., 1998, 15, 393 Search PubMed.
  19. J. Jerphagnon and S. K. Kurtz, J. Appl. Phys., 1970, 41, 1667 CrossRef.
  20. W. N. Herman and L. M. Hayden, J. Opt. Soc. Am. B Opt. Phys., 1995, 12, 416 Search PubMed.
  21. D. Yu, A. Gharavi and L. Yu, J. Am. Chem. Soc., 1995, 117, 11680 CrossRef CAS.
  22. T. J. Marks and M. A. Rather, Angew. Chem., Int. Ed. Engl., 1995, 34, 155 CrossRef CAS.
  23. M. Kauranen, T. Verbiest, C. Boutton, M. N. Teerenstra, K. Clays, A. J. Schouten, R. J. M. Nolte and A. Persoons, Science, 1995, 270, 966 CAS.
Click here to see how this site uses Cookies. View our privacy policy here.