Use of a Cu2+ probe to characterise silica-pillaring in zirconium phosphate by electron paramagnetic resonance spectroscopy

(Note: The full text of this document is currently only available in the PDF Version )

Fouzia Khattou, Guillaume Aptel, Jean-Victor Zanchetta, Deborah J. Jones, Bruno Deroide and Jacques Rozière


Abstract

Copper has been used as an electron paramagnetic resonance (EPR) probe for the interlayer environment ofα-zirconium phosphate (α-ZrP) intercalated from hydrolysed/condensed 3-(2-aminoethylamino)propyl-trimethoxysilane solutions. These solids are precursors to porous silica-pillared solids. The EPR spectra of the Cu2+–aminosiloxane pillaring solution and of the intercalated solid prepared using this solution are identical. More detailed study of the solution has shown the existence of two types of EPR spectra, when the molar ratio Si/Cu ≥ 2 and when Si/Cu < 2. For the former, Cu2+ has an environment of nitrogen and oxygen (4 + 2); at lower Si/Cu ratios, the EPR spectra are characteristic of an oxygen atom environment. On acidification of the aminosiloxane solution, nitrogen coordination to Cu2+ is progressively replaced by oxygen, as the amino groups become protonated.


References

  1. D. J. Jones and J. Rozière, in Progress in Ion Exchange Advances and Applications, ed. A. Dyer, M. J. Hudson and P. A. Williams, The Royal Society of Chemistry, Cambridge, 1997, p. 16 Search PubMed.
  2. R. Backov, B. Bonnet, D. J. Jones and J. Rozière, Chem. Mater., 1997, 9, 1812 CrossRef CAS.
  3. D. J. Jones, J. M. Leloup, Yi Ding and J. Rozière, Solid State Ionics, 1993, 61, 117 CrossRef CAS.
  4. T. Coradin, R. Backov, D. J. Jones, J. Rozière and R. Clement, Mol. Cryst. Liq. Cryst., 1998, 311, 275 Search PubMed.
  5. J. A. Gavin, N. Deng, M. Alcala and T. E. Mallouk, Chem. Mater., 1998, 10, 1937 CrossRef CAS.
  6. E. P. Giannelis, Adv. Mater., 1996, 8, 29 CAS.
  7. I. V. Mitchell, Pillared Layered Structures: Current Trends and Applications, Elsevier Applied Science, London, 1990 Search PubMed.
  8. (a) S. Hardin, D. Hay, M. Millikan, J. V. Sanders and T. W. Turney, Chem. Mater., 1991, 3, 977 CrossRef CAS; (b) W. Hou, B. Peng, Q. Yan, X. Fu and G. Shi, J. Chem. Soc., Chem. Commun., 1993, 253 RSC; (c) M. W. Anderson and J. Klinowski, Inorg. Chem., 1990, 29, 3263 CrossRef CAS.
  9. (a) M. A. Drezdzon, Inorg. Chem., 1988, 27, 4628 CrossRef CAS; (b) K. Chibwe and W. Jones, Chem. Mater., 1989, 1, 489 CrossRef CAS; (c) E. D. Dimotakis and T. J. Pinnavaia, Inorg. Chem., 1990, 29, 2393 CrossRef CAS; (d) A. de Roy, C. Forano, K. El Malki and J. P. Besse, in Synthesis of Microporous Materials, ed. M. L. Occelli and H. Robson, Van Nostrand Reinhold, New York, 1992, p. 108 Search PubMed; (e) J. Wang, Y. Tian, R. C. Wang and A. Clearfield, Chem. Mater., 1992, 4, 1276 CrossRef CAS.
  10. P. Olivera-Pastor, P. Maireles-Torres, E. Rodriquez-Castellon, A. Jiménez-Lopez, T. Cassagneau, D. J. Jones and J. Rozière, Chem. Mater., 1996, 8, 1758 CrossRef CAS.
  11. (a) S. T. Wong and S. Cheng, Chem. Mater., 1993, 5, 770 CrossRef CAS; (b) J. Dailey and T. J. Pinnavaia, Chem. Mater., 1992, 4, 855 CrossRef CAS.
  12. M. G. Voronkov and V. I. Lavrent'yev, Top. Curr. Chem., 1982, 102, 199 CAS.
  13. (a) D. J. Jones, T. Cassagneau and J. Rozière, Multifunctional Mesoporous Inorganic Solids, 1993, 289 Search PubMed; (b) J. Rozière, D. J. Jones and T. Cassagneau, J. Mater. Chem., 1991, 1, 1081 RSC; (c) T. Cassagneau, D. J. Jones and J. Rozière, J. Phys. Chem., 1993, 97, 8678 CrossRef CAS; (d) T. Cassagneau, Ph.D. Thesis, Université Montpellier II, France, 1994.
  14. F. J. Feher and K. D. Wyndham, Chem. Commun., 1998, 323 RSC.
  15. J. M. Comets and L. Kevan, J. Phys. Chem., 1993, 97, 12 004 CrossRef CAS.
  16. H. Yamada, N. Azuma and L. Kevan, J. Phys. Chem., 1995, 99, 11 190 CrossRef CAS.
  17. L. Bergaoui, J. F. Lambert, H. Suquet and M. Che, J. Phys. Chem., 1995, 99, 2155 CrossRef CAS.
  18. A. M. Klonkowski and C. W. Schlaepfer, J. Non-Cryst. Solids., 1991, 129, 101 CAS.
  19. G. Alberti and E. Torracca, J. Inorg. Nucl. Chem., 1968, 30, 317 CrossRef CAS.
  20. S. Fujiwara, S. Katsumata and T. Seki, J. Phys. Chem., 1967, 71, 115 CAS.
  21. W. B. Lewis, M. Alei. Jr and L. O. Morgan, J. Chem. Phys., 1966, 44, 2409 CrossRef.
  22. B. R. Mc Garvey, Transition Metal Chemistry, 3, ed. R. L. Carlni, Marcel Dekker, New York, NY, 1966 Search PubMed.
  23. D. M. Clementz, T. J. Pinnavaia and M. M. Mortland, J. Phys. Chem., 1973, 77, 196 CrossRef CAS.
  24. G. Martini, V. Bassetti and M. F. Ottaviani, J. Chem. Phys., 1980, 77, 311 CAS.
  25. V. Bassetti, L. Burlamacchi and G. Martini, J. Am. Chem. Soc., 1979, 101, 5471 CrossRef CAS.
  26. R. Poupko and Z. Luz, J. Chem. Phys., 1972, 57, 3311 CrossRef CAS.
  27. J. G. Darab and R. K. Mc Crone, Phys. Chem. Glasses, 1991, 32, 91 Search PubMed.
  28. A. H. Maki and B. R. Mc Garvey, J. Chem. Phys., 1958, 29, 31 CrossRef.
  29. D. Kivelson and R. Neiman, J. Chem. Phys., 1961, 35, 149 CAS.
  30. H. Imagawa, Phys. Status Solidi B, 1968, 30, 469 CAS.
  31. A. B. P. Lever, Inorganic Electronic Spectroscopy, Elsevier, Toronto, 1984 Search PubMed.
  32. C. C. Addison and B. M. Gatehouse, Chem Ind. (London), 1958, 464 CAS; J. Chem. Soc., 1960, 613 Search PubMed.
  33. I. M. Procter, B. J. Hathaway and P. Nicholls, J. Chem. Soc. A., 1968, 1678 RSC.
  34. A. A. G. Tomlinson, B. J. Hathaway, D. E. Billing and P. Nicholls, J. Chem. Soc. A., 1969, 65 RSC.
  35. B. J. Hathaway, J. Chem. Soc., Dalton Trans., 1972, 1196 RSC.
  36. G. Vierke, Z. Naturforsch., Teil A., 1971, 26, 554 CAS.
  37. G. Aptel, Ph.D. Thesis, Université Montpellier II, France, 1997.
  38. M. M. Sprung and F. O. Guenther, J. Am. Chem. Soc., 1955, 77, 3996 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.