Optical and thermal properties of cholesteric solid from dicholesteryl esters of diacetylenedicarboxylic acid

(Note: The full text of this document is currently only available in the PDF Version )

Nobuyuki Tamaoki, Grzegorz Kruk and Hiro Matsuda


Abstract

Dicholesteryl esters of diacetylenedicarboxylic acid with different lengths of methylene linkages were synthesised. Compounds with (CH2)n (n = 2, 4, 5, 6, 7, 8, 10) showed a cholesteric phase. Phase transition temperatures from the isotropic phase to the anisotropic phase showed an odd–even effect of the number of (CH2) units. By rapid cooling from the cholesteric phase to 0[thin space (1/6-em)]°C, the compounds were solidified retaining the cholesteric colours (cholesteric solid), some of which were stable at room temperature. Changing the temperature at which rapid cooling started changed the colours of the cholesteric solid. The thermal stability of the cholesteric solid also showed an odd–even effect of the number of (CH2) units. The effect can be explained by the difference in the stable structures of the molecules and the strength of the weak intermolecular interactions via carbonyl groups between the compounds with odd and even (CH2), which was observed in the FT-IR spectra.


References

  1. J. W. Goodby, G. H. Mehl, I. M. Saez, R. P. Tuffin, G. Mackenzie, R. Auzély-Velty, T. Benvegnu and D. Plusquellec, Chem. Commun., 1998, 2057 RSC.
  2. H. Shi and S. H. Chen, Liq. Cryst., 1995, 19, 849 CAS.
  3. N. Tamaoki, A. V. Parfenov, A. Masaki and H. Matsuda, Adv. Mater., 1997, 9, 1102 CrossRef CAS.
  4. Cholesteric solids of low- or medium-molecular-weight compounds (or their mixtures) showing a stable single color have been known: K. Tsuji, M. Sorai and S. Seki, Bull. Chem. Soc. Jpn., 1971, 44, 1452 Search PubMed; W. Mahler and M. Panar, J. Am. Chem. Soc., 1972, 94, 7195 CAS refernce 2. Cholesteric solids of polymers showing colors have also been known: H. Finkelmann, J. Koldehoff and H. Ringsdorf, Angew. Chem., Int. Ed. Engl., 1978, 17, 935 CrossRef CAS; T. Tsutsui and R. Tanaka, Polymer, 1980, 21, 1351 Search PubMed; P. J. Shannon, Macromolecules, 1984, 17, 1873 CrossRef; J. Watanabe, T. Nagase, H. Itoh, T. Ishi and T. Satoh, Mol. Cryst. Liq. Cryst., 1988, 164, 135 CAS.
  5. N. Tamaoki, T. Terai and H. Matsuda, Jpn. J. Appl. Phys., 1998, 37, 6113 CrossRef CAS.
  6. P. Palffy-Muhoray, Nature, 1998, 391, 745 CrossRef CAS.
  7. J. Rault, L. Liébert and L. Strzelecki, Bull. Soc. Chim. Fr., 1975, 1175 CAS.
  8. A. T. M. Marcelis, A. Koudijs and E. J. R. Sudhölter, J. Mater. Chem., 1996, 6, 1469 RSC.
  9. A. T. M. Marcelis, A. Koudijs and E. J. R. Sudhölter, Liq. Cryst., 1995, 18, 851 CAS.
  10. E. M. Barrall II, in Liquid Crystals, ed. F. D. Saeva, Marcel Dekker, New York, 1979, Chapter 9 Search PubMed.
  11. N. Tamaoki, A. V. Parfenov, A. Masaki and H. Matsuda, Mater. Res. Soc. Symp. Proc., 1998, 488, 915 CAS.
  12. (a) H. W. Thompson and P. Torkington, J. Chem. Soc., 1945, 640 RSC; (b) E. J. Hartwell, R. E. Richards and H. W. Thompson, J. Chem. Soc., 1948, 1436 RSC.
  13. J. Le Moigne, A. Soldera, D. Guillon and A. Skoulios, Liq. Cryst., 1989, 6, 627 CAS.
  14. W. J. DeJarlais and E. A. Emken, Synth. Commun., 1980, 10, 653 CAS.
Click here to see how this site uses Cookies. View our privacy policy here.