The crystal structure of a new oxide ion conductor NaBi3V2O10 and oxide ion conductivity in Pb2Bi2V2O10

(Note: The full text of this document is currently only available in the PDF Version )

Derek C. Sinclair, Eugenia Marinou and Janet M. S. Skakle


Abstract

Rietveld refinements using neutron diffraction data have been used to determine the crystal structure of the room temperature polymorph of a new oxide ion conductor, NaBi3V2O10. The cell is isostructural with Pb2Bi2V2O10 and the data refined in spacegroup P1 with cell parameters of a = 7.0613(8), b = 7.2086(8), c = 5.5343(10) Å, α = 113.328(4), β = 84.4787(14) and γ = 112.249(3)° with an R value of 2.19%. The low symmetry of Pb2Bi2V2O10 and NaBi3V2O10 is attributed to structural distortions associated with electron lone pairs on Pb+II and Bi+III. Replacement of Pb+II by Bi+III and Na+I produces a structural phase transition to a higher symmetry polymorph in NaBi3V2O10 at ca. 575[thin space (1/6-em)]°C. ac Impedance measurements show Pb2Bi2V2O10 to be a modest oxide ion conductor with conductivity of ca. 1 mS cm–1 at 800[thin space (1/6-em)]°C. As a result of the phase transition in NaBi3V2O10 its conductivity is ca. one order of magnitude greater than that of Pb2Bi2V2O10 at 600[thin space (1/6-em)]°C.


References

  1. T. Takahashi and H. Iwahara, Mater. Res. Bull., 1978, 13, 1447 CrossRef CAS.
  2. F. Abraham, J. C. Boivin, G. Mairesse and G. Nowogrocki, Solid State Ionics, 1990, 40/41, 934 CrossRef.
  3. T. Lu and B. C. H. Steele, Solid State Ionics, 1986, 21, 339 CrossRef CAS.
  4. P. Wood, D. C. Sinclair and F. P. Glasser, Solid State Ionics, 1993, 66, 151 CrossRef.
  5. G. Pang, S. Feng, Y. Tang, C. Tan and R. Xu, Chem. Mater., 1998, 10, 2446 CrossRef CAS.
  6. W. J. Zhou, J. Solid State Chem., 1990, 87, 44 CAS.
  7. W. J. Zhou, PhD Thesis, University of Cambridge, 1987.
  8. D. C. Sinclair, C. J. Watson, R. A. Howie, J. M. S. Skakle, A. M. Coats, C. A. Kirk, E. E. Lachowski and J. Marr, J. Mater. Chem., 1998, 8, 281 RSC.
  9. D. A Fletcher, R. F. McMeeking and D. J. Parkin, Inf. Comput. Sci., 1996, 36, 746 Search PubMed.
  10. L. H. Brixner and C. M. Foris, Mater. Res. Bull., 1974, 9, 273 CAS.
  11. P. L. Wang and D. Y. Li, Acta Phys. Sin., 1985, 34, 235 Search PubMed.
  12. B. F. Mentzen, A. Latrach, J. Bouix and A. W. Hewat, Mater. Res. Bull., 1984, 19, 549 CAS.
  13. P. Y. Lui, MSc Thesis, University of Aberdeen, 1998.
  14. R. I. Smith and S. Hull, Report RAL-TR-97-038, Rutherford Appleton Laboratory, 1997.
  15. W. I. F. David, R. M. Ibberson and J. C. Mathewman, Report RAL-92-032, Rutherford Appleton Laboratory, 1992.
  16. V. F. Sears, Neutron News, 1992, 3, 26 Search PubMed.
  17. I. D. Brown and D. Altermatt, Acta Crystallogr., Sect. B, 1985, 41, 244 CrossRef.
  18. J. T. S. Irvine, D. C. Sinclair and A. R. West, Adv. Mater., 1990, 2, 132 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.