Studies of the thermal and photochemical decomposition mechanisms of But2Se in the presence or absence of Me2Zn using deuterium labelled analogues

(Note: The full text of this document is currently only available in the PDF Version )

Nigel L. Pickett, Douglas F. Foster, Nick Maung and David J. Cole-Hamilton


Abstract

Thermal decomposition of But2Se in helium produces 2-methylpropene and 2-methylpropane (8∶1) and no volatile selenium containing products, apart from the element. In hydrogen, the products are the same (8∶1 ratio of 2-methylpropene∶2-methylpropane). However, the 2-methylpropane produced by decomposing d18-But2Se in H2 contains significant amounts of hydrogen (d9∶d10 = 2.6∶1). In the codecomposition of d0- and d18-But2Se in helium, d0, d1, d9 and d10-2-methylpropane are all formed, but d9-But2Se is not a product. Photolysis of d0- and d18-But2Se in helium at room temperature produces 2-methylpropane and 2-methylpropene (1∶1) with the 2-methylpropane being d0, d1, d9 and d10. d9-But2Se is also formed along with small amounts of 2,2,3,3-tetramethylbutane and d0- and d18-But2Se2. Thermal codecomposition of Me2Zn with d18-But2Se in H2 produces d0 and d1-methane and d8-2-methylpropene together with traces of d8-2-methylpropane.

These results are interpreted as indicating that thermally, But2Se decomposes via homolytic cleavage of the Se–C bonds and that the free But· so formed initiates a radical chain reaction involving H· as the chain carrier through its reaction with intact But2Se to give hydrogen, 2 × 2-methylpropene, Se and H·. The chain is initiated by But· abstracting H· from But2Se or from H2. Semi-empirical calculations carried out with a variety of levels of theory have confirmed that E–C bond cleavage is the first step in the decomposition of all the group 16 precursors studied and have been used to model the product distribution with time. They confirm the conclusions drawn on the basis of our experimantal observations, except that the H· abstraction reactions from intact But2Se probably do not occur by a concerted pathway, rather they are stepwise. The radical chain process also occurs in the presence of Me2Zn, but the radical chain initiator in this case is Me· from homolytic fission of the Zn–C bonds. Evidence is presented that these reactions occur on the ZnSe surface. The small amount of 2-methylpropane produced from reaction of Me2Zn with But2Se in H2 comes from hydrogenation of 2-methylpropene catalysed by ZnSe. Photochemically, homolytic cleavage of the Se–C bonds in But2Se again occurs, but ButSe· has sufficient lifetime to recombine with tBu· and the major hydrocarbon products are formed from radical–radical reactions.


References

  1. D. N. Armitage, H. M. Yates, J. O. Williams, D. J. Cole-Hamilton and I. L. J. Patterson, Adv. Mater. Opt. Electron., 1992, 1, 43 CAS.
  2. D. F. Foster, I. L. J. Patterson, L. D. James, D. J. Cole-Hamilton, D. N. Armitage, H. M. Yates, A. C. Wright and J. O. Williams, Adv. Mater. Opt. Electron, 1994, 3, 163 CAS.
  3. M. Danek, J. S. Huh, L. Foley and K. F. Jensen, J. Cryst. Growth, 1994, 145, 530 CrossRef CAS.
  4. K. Nishimura, Y. Nagato and K. Sakai, Jpn. J. Appl. Phys., 1993, 32, L428 CAS.
  5. W. S. Kuhn, A. Naumov, H. Stanzl, S. Bauer, K. Wolf, H. P. Wagner, E. Gebhardt, U. W. Pohl, A. Krost, W. Richter, U. Dumichen and K. H. Thiele, J. Cryst. Growth, 1992, 123, 605 CrossRef CAS.
  6. B. Bollig, M. Blauermel, W. Taudt and M. Henken, J. Cryst. Growth, 1994, 145, 562 CrossRef CAS.
  7. W. Taudt, B. Wachtendorf, R. Beccard, A. Wahid, M. Henken, A. L. Gurskii and K. Vakarelska, J. Cryst. Growth, 1994, 145, 582 CrossRef CAS.
  8. T. Obinata, K. Vesugi, G. Sato, I. Suemune, H. Machida and N. Shimoyama, Jpn. J. Appl. Phys., 1995, 34, 4143 CrossRef CAS.
  9. W. S. Kuhn, R. Driad, H. Stanzl, A. Lusson, K. Wolf, B. Qu'Hen, H. Sahin, L. Srob, C. Grattepain, X. Quesada, W. Grebhardt and O. Gorochov, J. Cryst. Growth, 1994, 138, 448 CrossRef CAS.
  10. K. Wolf, H. Stanzl, A. Naumov, H. P. Wagner, W. S. Kahn, B. Hahn and W. Gebhardt, J. Cryst. Growth, 1994, 138, 412 CrossRef CAS.
  11. P. J. Wright, B. Cockayne, P. J. Parbrook, P. E. Oliver and A. C. Jones, J. Cryst. Growth, 1991, 108, 525 CrossRef CAS and references therein.
  12. N. L. Pickett, D. F. Foster and D. J. Cole-Hamilton, J. Mater. Chem., 1996, 6, 507 RSC.
  13. N. L. Pickett, D. F. Foster and D. J. Cole-Hamilton, J. Cryst. Growth, 1997, 170, 476 CrossRef CAS.
  14. N. L. Pickett, F. G. Riddell, D. F. Foster, D. J. Cole-Hamilton and J. R. Fryer, J. Mater. Chem., 1997, 8, 1855 RSC.
  15. A. Kamata, M. Mitsuhashi and H. Fujita, Appl. Phys. Lett., 1993, 63, 3353 CrossRef CAS.
  16. N. L. Pickett, D. F. Foster, W. G. Thomas, F. G. Riddell, D. J. Cole-Hamilton and J. R. Fryer, J. Mater. Chem., 1998, 8, 2769 RSC.
  17. H. Bock and S. Mohmand, Angew. Chem., Int. Ed. Engl., 1977, 16, 104 CrossRef.
  18. G. Martin and N. Barroeta, Int. J. Chem. Kinet., 1980, 12, 699 CAS.
  19. T. Hirabayashi, S. Mohmand and H. Bock, Chem., Ber., 1982, 115, 483 CAS.
  20. C. G. Thompson, R. A. Mayer and J. S. Ball, J. Am. Chem. Soc., 1952, 74, 3284 CrossRef CAS.
  21. W. Tsang, J. Chem. Phys., 1964, 40, 1498 CAS.
  22. T. Bamkole, J. Chem. Soc., Perkin Trans. 2, 1977, 439 RSC.
  23. M. Sugioka, T. Yotsuyangi and K. Aomura, Hokkaido Daigaku Kugakuba Kenkyu Hokoku, 1970, 57, 191 Search PubMed; Chem. Abstr., 1973, 78, 29000w Search PubMed.
  24. M. Yamada, T. Kamo, J. Tang, Y. Oshima and A. Amano, Nippon Kagaku Kaishi, 1985, 2283 CAS; Chem. Abstr., 1986, 104, 224462f Search PubMed.
  25. W. S. Kuhn, R. Helbing, B. Qu'Hen and O. Gorochov, J. Cryst. Growth, 1995, 146, 580 CrossRef CAS.
  26. G. H. Fan, N. Maung, T. L. Ng, P. F. Heelis, J. O. Williams, A. C. Wright, D. F. Foster and D. J. Cole-Hamilton, J. Cryst. Growth, 1997, 170, 485 CrossRef CAS.
  27. W. Bell, J. Stevenson, D. J. Cole-Hamilton and J. E. Hails, Polyhedron, 1994, 13, 1253 CrossRef CAS.
  28. N. L. Pickett, D. F. Foster, D. J. Cole-Hamilton and J. E. Hails, Phosphorus Sulphur Silicon, 1998, 136–138, 427 Search PubMed.
  29. N. L. Pickett, D. F. Foster and D. J. Cole-Hamilton, in Fundamental Gas-phase and Surface Chemistry of Vapour-phase Synthesis, eds. M. D. Allendorf, M. R. Zachariah, L. Mountziaris and A. H. McDaniel, Electrochemical Society Proceedings, Pennington, 1999, vol. 98–23, p. 307 Search PubMed.
  30. D. F. Foster and D. J. Cole-Hamilton, Inorg. Synth., 1997, 31, 29 CAS.
  31. D. F. Foster, N. L. Pickett and D. J. Cole-Hamilton, Polyhedron, 1999, 18, 1329 CrossRef CAS.
  32. R. C. Morrison, R. W. Hall, J. A. Schwindeman, C. W. Kamienski and J. F. Engel, US Pat., 5340507, 1994 Search PubMed.
  33. R. C. Morrison, R. W. Hall, J. A. Schwindeman, C. W. Kamienski and J. F. Engel, Eur. Pat. Appl., 0525881Al, 1993 Search PubMed.
  34. L. D. Stockton, T. L. Ng, N. Maung, I. B. Poole, J. O. Williams, A. C. Wright, D. F. Foster and D. J. Cole-Hamilton, J. Cryst. Growth, 1998, 183, 95 CrossRef CAS.
  35. W. J. Hehre, L. Radom, P. R. v. Schleyer and J. A. Pople, Ab Initio Molecular Orbital Theory, John Wiley and Sons, New York, 1986 Search PubMed.
  36. R. G. Parr and Y. Weitao, Density-Functional Theory of Atoms and Molecules, Oxford University Press, Oxford, 1995 Search PubMed.
  37. J. M. Seminario and P. Politzer, Modern Density Functional Theory: A Tool for Chemistry, Elsevier, Amsterdam, 1995 Search PubMed.
  38. N. Maung, J. O. Williams and A. C. Wright, J. Mol. Struct. (THEOCHEM), 1998, 453, 181 CrossRef CAS.
  39. GAUSSIAN 94 (Revision E.1), M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. C. Johnson, M. A. Robb, J. R. Cheeseman, T. A. Keith, G. A. Petersson, J. A. Montgomery, K. Raghavachari, M. A. Al-Laham, V. G. Zakrzewski, J. V. Ortiz, J. B. Foresman, J. Cioslowski, B. B. Strefanov, A. Nanayakkara, M. Challacombe, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. P. Stewart, M. Head-Gordon, C. Gonzalez and J. A. Pople, Gaussian Inc., Pittsburgh, PA, 1995.
  40. SPARTAN version 4.1.2, Wavefunction Inc., 18401 Von Karman Ave., #370, Irvine, CA92715, USA, © 1995 Wavefunction, Inc..
  41. W. J. Hehre, L. D. Burke, A. J. Shusterman and W. J. Pietro, Experiments in Computational Organic Chemistry, Wavefunction, Inc. Irvine, 1993 Search PubMed.
  42. W. J. Hehre, Practical Strategies for Electronic Structure Calculations, Wavefunction, Inc. Irvine, CA, 1995 Search PubMed.
  43. W. J. Hehre, A. J. Shusterman and W. W. Huang, A Laboratory Book of Computational Organic Chemistry, Wavefunction, Inc. Irvine, CA, 1996 Search PubMed.
  44. Gaussian 94 (Revision D.1 and higher) User's Reference, Gaussian Inc., Pittsburgh, PA, 1994–1996 Search PubMed.
  45. J. B. Foresman and A. E. Frisch, Exploring Chemistry with Electronic Structure Methods, Gaussian Inc., Pittsburgh, PA, 2nd edn., 1995–96 Search PubMed.
  46. J. J. P. Stewart, MOPAC 93, Fujitsu Limited, Tokyo, Japan, 1993.
  47. J. J. P. Stewart, J. Comput. Chem., 1989, 10, 209 CrossRef CAS.
  48. M. J. S. Dewar and W. J. Thiel, J. Am. Chem. Soc., 1977, 99, 4899 CrossRef CAS.
  49. M. J. S. Dewar, E. G. Zoebisch, E. F. Healy and J. J. P. Stewart, J. Am. Chem. Soc., 1985, 107, 3902 CrossRef.
  50. T. A. Halgren and W. N. Lipscomb, Chem. Phys. Lett., 1977, 49, 225 CrossRef CAS.
  51. W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery, Numerical Recipes in FORTRAN-The Art of Scientific Computing, Cambridge University Press, Cambridge, 1992 Search PubMed.
  52. Mathcad 6.0, Mathsoft Inc., 1996.
  53. N. L. Pickett, D. F. Foster and D. J. Cole-Hamilton, unpublished observations.
  54. R. N. Birrell and A. F. Trotman-Dickenson, J. Chem. Soc., 1960, 4218 RSC.
  55. W. K. An, M. J. Kappers and R. F. Hicks, J. Cryst. Growth, 1997, 173, 386 CrossRef.
  56. J. Stevenson, W. Bell, J. Ferry, D. J. Cole-Hamilton and J. E. Hails, J. Organomet. Chem., 1993, 449, 141 CrossRef CAS.
  57. N. Maung, J. O. Williams and A. C. Wright, Chem. Mater., 1999, submitted for publication Search PubMed.
  58. S. W. Benson, J. Chem. Soc., Faraday Trans. 2, 1987, 83, 791 RSC.
  59. S. W. Benson, Chem. Rev., 1978, 78, 23 CrossRef CAS.
  60. S. W. Benson, Thermochemical Kinetics, John Wiley & Sons, New York, 1976 Search PubMed.
  61. D. F. Foster, C. Glidewell, G. R. Woolley and D. J. Cole-Hamilton, J. Electron. Mater., 1995, 24, 1731 Search PubMed.
  62. W. Tsang, J. Phys. Chem. Ref. Data, 1990, 19, 1 CAS.
  63. V. D. Knyazev, I. A. Dubinsky, I. R. Slagle and D. Gutman, J. Phys. Chem., 1994, 98, 5279 CrossRef CAS.
  64. W. Tsang and R. F. Hampson, J. Phys. Chem. Ref. Data, 1986, 15, 1087 CAS.
  65. J. V. Michael and J. R. Fisher, J. Phys. Chem., 1990, 94, 3318 CrossRef CAS.
  66. J. V. Michael, J. Chem. Phys., 1990, 92, 3394 CrossRef CAS.
  67. J. I. Steinfield, J. S. Francisco and W. L. Hase, Chemical Kinetics and Dynamics, Prentice-Hall, Englewood Cliffs, NJ, 1989 Search PubMed.
  68. A. E. D. McQueen, M. B. Parker, J. B. Mullin and D. J. Cole-Hamilton, Chemtronics, 1989, 4, 264 Search PubMed.
  69. A. E. D. McQueen, P. N. Culshaw, J. C. Walton, D. V. Shenai-Khatkhate, D. J. Cole-Hamilton and J. B. Mullin, J. Cryst. Growth, 1991, 107, 325 CrossRef CAS.
  70. J. E. Hails and D. J. Cole-Hamilton, unpublished observations.
  71. J. E. Hails, D. J. Cole-Hamilton and A. E. D. McQueen, J. Crystal Growth, 1998, 183, 594 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.