Comparison of the structural behaviour of the low thermal expansion NZP phases MTi2(PO4)3 (M = Li, Na, K)

(Note: The full text of this document is currently only available in the PDF Version )

D. A. Woodcock and P. Lightfoot


Abstract

We present the results of high resolution neutron powder diffraction studies of the NZP phases LiTi2(PO4)3 (LiTP) and KTi2(PO4)3 (KTP). The thermal expansion coefficients for both materials are reported and compared to those of NaTi2(PO4)3. αa for LiTP is found to decrease from 0.75 to 0.27 × 10–6[thin space (1/6-em)]°C–1 between 20 and 800[thin space (1/6-em)]°C; αc is found to be constant at 30.8 × 10–6[thin space (1/6-em)]°C–1 over this temperature range. αa for KTP is found to increase from –3.2 to 2.5 × 10–6[thin space (1/6-em)]°C–1 over the same temperature range and αV to increase from –0.8 to 12.8 × 10–6[thin space (1/6-em)]°C–1. The anomalously large value of αc in LiTP is related to the thermally induced migration of Li+ from MI to MII sites, behaviour which is unique in these systems. Alamo’s model for thermal expansivity in this system is applied and parameters reported.


References

  1. D. A. Woodcock, P. Lightfoot, P. A. Wright, L. A. Villaescusa, M.-J. Díaz-Cabañas and M. A. Camblor, J. Mater. Chem., 1999, 9, 349 RSC.
  2. D. A. Woodcock, P. Lightfoot, L. A. Villaescusa, M.-J. Díaz-Cabañas, M. A. Camblor and D. Engberg, Chem. Mater., in press Search PubMed.
  3. M. P. Attfield and A. W. Sleight, Chem. Commun., 1998, 601 RSC.
  4. S. H. Park, R. W. Groβe Kunstleve, H. Graetsch and H. Gies, Stud. Surf. Sci. Catal., 1997, 105, 1989.
  5. M. P. Attfield and A. W. Sleight, Chem. Mater., 1998, 10, 2013 CrossRef CAS.
  6. J. S. O. Evans, T. A. Mary, T. Vogt, M. A. Subramanian and A. W. Sleight, Chem. Mater., 1996, 8, 2809 CrossRef CAS.
  7. J. S. O. Evans, T. A. Mary and A. W. Sleight, J. Solid State Chem., 1998, 137, 148 CrossRef CAS.
  8. D. A. Woodcock, P. Lightfoot and C. Ritter, J. Solid State Chem., in press. Search PubMed.
  9. J. S. O. Evans, T. A. Mary and A. W. Sleight, J. Solid State Chem., 1997, 133, 580 CrossRef CAS.
  10. J. P. Boilot, J. P. Salanie, G. Desplanches and D. Le Potier, Mater. Res. Bull., 1979, 14, 1469 CrossRef CAS.
  11. D. A. Woodcock, P. Lightfoot and R. I. Smith, Mater. Res. Soc. Symp. Proc., 1998, 547, 191.
  12. S. Y. Limaye, D. K. Agrawal and H. A. McKinstry, J. Am. Ceram. Soc., 1987, 70, C232.
  13. R. Roy, D. K. Agrawal, J. Alamo and R. A. Roy, Mater. Res. Bull., 1984, 19, 471 CrossRef CAS.
  14. T. Oota and I. Yamai, J. Am. Ceram. Soc., 1986, 69, 1 CrossRef CAS.
  15. C. Y. Huang, D. K. Agrawal and H. A. McKinstry, J. Mater. Sci., 1995, 30, 3509 CrossRef CAS.
  16. K. V. G. Kutty, R. Asuvathraman and R. Sridharan, J. Mater. Sci., 1998, 33, 4007 CrossRef CAS.
  17. D. A. Woodcock, P. Lightfoot and C. Ritter, Chem. Commun., 1998, 107 RSC.
  18. J. Alamo, Solid State Ionics, 1993, 63–65, 547 CrossRef CAS.
  19. G. E. Lenain, H. A. McKinstry, J. Alamo and D. K. Agrawal, J. Mater. Sci., 1987, 22, 17 CrossRef CAS.
  20. J. L. Rodrigo, P. Carrasco and J. Alamo, Mater. Res. Bull., 1989, 24, 611 CrossRef CAS.
  21. J. Alamo and J. L. Rodrigo, Solid State Ionics, 1993, 63–65, 678 CrossRef CAS.
  22. M. Alami, R. Brochu, J. L. Soubeyroux, P. Gravereau, G. Le Flem and P. Hagenmuller, J. Solid State Chem., 1991, 90, 185 CrossRef CAS.
  23. J. Alamo and J. L. Rodrigo, Mater. Res. Bull., 1992, 27, 1091 CAS.
  24. P. Lightfoot, D. A. Woodcock, J. D. Jorgensen and S. Short, Int. J. Inorg. Mater., 1999, 1, 53 CrossRef CAS.
  25. D. A. Woodcock, P. Lightfoot and R. I. Smith, J. Mater. Chem., 1999, 9, 2631 RSC.
  26. H. Aono, E. Sugimoto, Y. Sadaoka, N. Imanaka and G. Adachi, J. Electrochem. Soc., 1990, 137, 1023 CAS.
  27. A. C. Larson and R. B. Von Dreele, Report No. LA-UR-86-748, Los Alamos National Laboratory, Los Alamos, NM, 1987.
  28. C. Delmas, A. Nadiri and J. L. Soubeyroux, Solid State Ionics, 1988, 28–30, 419.
Click here to see how this site uses Cookies. View our privacy policy here.