Liquid crystals based on pseudohalogold(I) isocyanide complexes

(Note: The full text of this document is currently only available in the PDF Version )

Mohamed Benouazzane, Silverio Coco, Pablo Espinet and José M. Martín-Alvarez


Abstract

Rod-like complexes [AuX(C[triple bond, length as m-dash]NR)] (X = CN, SCN; R = C6H4OCnH2n + 1-p, C6H4C6H4OCnH2n + 1-p (n = 4, 6, 8, 10, 12); 2-F-4-OC12H25C6H3; 3-F-4-OC12H25C6H3; and 3,4,5-(OC10H21)3C6H2) have been prepared by reaction of [AuCl(C[triple bond, length as m-dash]NR)] with KSCN or AgCN. The free phenyl isocyanides are not liquid crystals, but all the gold complexes display wide ranges of smectic A (SA) mesophases, except the compound [Au(SCN)(CNC6H4OC4H9)] which is not liquid crystalline, and the trialkoxyphenyl derivatives which show columnar hexagonal phases at room temperature. The determining influence of the electronic and structural characteristics of both the pseudohalo and isocyanide ligands on the stabilization and type of mesophase is discussed.


References

  1. A. M. Giroud-Godquin and P. M. Maitlis, Angew. Chem., Int. Ed. Engl., 1991, 30, 375 CrossRef.
  2. P. Espinet, M. A. Esteruelas, L. A. Oro, J. L. Serrano and E. Sola, Coord. Chem. Rev., 1992, 117, 215 CrossRef CAS.
  3. Inorganic Materials, ed. D. W. Bruce and D. O'Hare, John Wiley & Sons, Chichester, 1992, ch. 8 Search PubMed.
  4. S. A. Hudson and P. M. Maitlis, Chem. Rev., 1993, 93, 861 CrossRef CAS.
  5. Metallomesogens, ed. J. L. Serrano, VCH, Weinheim, 1996 Search PubMed.
  6. T. Kaharu, T. Tanaka, M. Sawada and S. Takahashi, J. Mater. Chem., 1994, 4, 859 RSC.
  7. R. Ishii, T. Kaharu, N. Pirio, S.-W. Zhang and S. Takahashi, J. Chem. Soc., Chem. Commun., 1995, 1215 RSC.
  8. S. Coco, P. Espinet, S. Falagán and J. M. Martín-Alvarez, New J. Chem., 1995, 19, 959 Search PubMed.
  9. P. Alejos, S. Coco and P. Espinet, New J. Chem., 1995, 19, 799 Search PubMed.
  10. M. Benouazzane, S. Coco, P. Espinet and J. M. Martín-Alvarez, J. Mater. Chem., 1995, 5, 441 RSC.
  11. S. Coco, P. Espinet, J. M. Martín-Alvarez and A. M. Levelut, J. Mater. Chem., 1997, 7, 19 RSC.
  12. R. Bayón, S. Coco, P. Espinet, C. Fernaández-Mayordomo and J. M. Martín-Alvarez, Inorg. Chem., 1997, 36, 2329 CrossRef CAS.
  13. H. Adams, N. A. Bailey, D. W. Bruce, R. Dhillon, D. Dummur, S. E. Hunt, E. Lalinde, A. A. Maggs, R. Orr, P. Stiring, M. S. Wragg and P. M. Maitlis, Polyhedron, 1988, 7, 1861 CrossRef CAS.
  14. M. M. El-Etri and W. M. Scovell, Inorg. Chem., 1990, 29, 480 CrossRef CAS.
  15. C.-M. Che, H.-K. Yip, W.-T. Wong and T.-F. Lai, Inorg. Chim. Acta, 1992, 197, 177 CrossRef CAS.
  16. S. Esperas, Acta Chem. Scand. A, 1976, 30, 527.
  17. K. Nakamoto, Infrared Spectra of Inorganic and Coordination Compounds, John Wiley & Sons, New York, 1970 Search PubMed.
  18. N. J. Destefano and J. L. Burmeister, Inorg. Chem., 1971, 10, 998 CrossRef.
  19. J. L. Burmeister and J. B. Melpolder, J. Chem. Soc. Chem. Commun., 1973, 613 RSC.
  20. J. B. Melpolder and J. L. Burmeister, Inorg. Chim. Acta, 1981, 49, 115 CrossRef CAS.
  21. A. H. Norbury, Adv. Inorg. Chem. Radiochem., 1975, 17, 232.
  22. J. L. Burmeister and F. Basolo, Inorg. Chem., 1964, 3, 1587 CrossRef.
  23. N. N. Akhtar, A. A. Isab, A. R. Al-Arfaj and M. S. Hussain, Polyhedron, 1997, 16, 125 CrossRef.
  24. W. Schneider, K. Angermaier, A. Sladek and H. Schmidbaur, Z. Naturforsch., Teil B, 1996, 51, 790 CAS.
  25. This is true for the major Au-SCN isomer, which is the one represented in Fig. 4; the minor Au-NCS isomer should probably be linear, acording to literature data (ref. 20).
  26. S. Coco, F. Díez-Expósito, P. Espinet, C. Férnandez-Mayordomo, J. M. Martín-Alvarez and A. M. Levelut, Chem. Mater., 1998, 10, 3666 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.