Quinuclidine derivatives as structure directing agents for the synthesis of boron containing zeolites

(Note: The full text of this document is currently only available in the PDF Version )

A. Grünewald-Lüke, B. Marler, M. Hochgräfe and H. Gies


Abstract

n-Alkylquinuclidinium ions with alkyl groups in the range from C1 to C6 were synthesized with the purpose of studying their influence as structure directing agents (SDAs) in zeolite synthesis, in particular on the structure type formed. Syntheses were performed in the system SiO2–B2O3–SDA–H2O–CH3OH under hydrothermal conditions at 160, 180, and 200[thin space (1/6-em)]°C. B2O3 was added in order to allow for charge balance through partial replacement of silicon atoms by the trivalent atom as established by 11B MAS NMR spectroscopy. The synthesis experiments led to the formation of seven different structure types: dodecasil 1H (DOH); decadodecasil 3R (DDR), sigma-2 (SGT), RUB-1 (LEV), ZSM-5 (MFI), EU-1 (EUO) and ZSM-12 (MTW) all containing n-alkylquinuclidinium ions as templates. In one case (SGT-type material) the active templating ion, methylquinuclidinium, was formed in situ from quinuclidine and methanol present in the reaction mixture. In order to identify the templating molecules (SDA) in the zeolite host framework solid-state 1H–13C CP MAS NMR was used. A single crystal structure refinement of quinuclidinium–DDR clearly shows the host–guest arrangement inside the zeolite pores.


References

  1. B. M. Lok, T. R. Cannan and C. A. Messina, Zeolites, 1983, 3, 282 CrossRef CAS.
  2. E. W. Valyocsik and L. D. Rollman, Zeolites, 1985, 5, 123 CAS.
  3. H. Gies and B. Marler, Zeolites, 1992, 12, 42 CrossRef CAS.
  4. M. E. Davis and R. F. Lobo, Chem. Mater., 1992, 4, 756 CrossRef CAS.
  5. M. E. Davis, Stud. Surf. Sci. Catal., 1995, 97, 35 CAS.
  6. J. M. Bennet and R. M. Kirchner, Zeolites, 1991, 11, 502.
  7. A. Merrouche, J. Patarin, H. Kessler, M. Soulard, L. Delmotte, J. L. Guth and J. F. Joly, Zeolites, 1992, 12, 226 CrossRef CAS.
  8. P. Caullet, J. L. Guth, J. Hazm, J. M. Lamblin and H. Gies, Eur. J. Solid State Inorg. Chem., 1991, t28, 345.
  9. A. Grünewald-Lüke and H. Gies, Microporous Mater., 1994, 3, 159 CrossRef.
  10. G. M. Sheldrick, SHELXTL, Siemens Crystallographic Research System, Siemens Analytical X-Ray Instruments Inc., Madison, WI, 1992(SHELX-93).
  11. H. Gies, Z. Kristallogr., 1986, 175, 93 CAS.
  12. M. Taramasso, G. Perego and B. Notari, in Proceedings of the 5th International Conference on Zeolites, ed. L. C. V. Rees, Heyden, Naples, 1980, p. 40 Search PubMed.
  13. W. M. Meier, O. H. Olson and Ch. Baerlocher, Atlas of Zeolite Structure Types, Elsevier, London, 4th edn., 1996 Search PubMed.
  14. A. Moini, K. D. Schmitt, E. W. Valyocsik and R. F. Polomski, Zeolites, 1994, 14, 504 CrossRef CAS.
  15. J. L. Casci, in Proceedings of the 7th International Conference on Zeolites, ed. Y. Murakami, A. Iijima and J. L. Ward, Elsevier, Amsterdam, 1986, p. 215 Search PubMed.
  16. N. A. Brisco, D. W. Johnson, G. T. Kokotailo, L. B. McCusker and M. D. Shannon, Zeolites, 1988, 8, 74.
  17. H. Gies, Z. Kristallogr., 1984, 167, 73 CAS.
  18. L. B. McCusker, J. Appl. Crystallogr., 1988, 21, 305 CrossRef CAS.
  19. H. Gerke and H. Gies, Z. Kristallogr., 1984, 166, 11 CAS.
  20. H. van Koningsveld, H. van Bekkum and J. C. Jansen, Acta Crystallogr., Sect. B, 1987, 43, 127 CrossRef.
  21. L. B. McCusker, Mater. Sci. Forum, 1993, 133–136, 423 Search PubMed.
  22. C. A. Fyfe, Solid State NMR for Chemists, C.F.C. Press, Guelph, Canada, 1983 Search PubMed.
  23. G. A. Olah, J. Am. Chem. Soc., 1973, 95, 6829 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.