Sol–gel synthesis of alumina modified by phosphorus: a solid state NMR characterization study

(Note: The full text of this document is currently only available in the PDF Version )

Juliette Quartararo, Michel Guelton, Monique Rigole, Jean-Paul Amoureux, Christian Fernandez and Jean Grimblot


Abstract

A sol–gel method using aluminium tri(sec-butoxide) and orthophosphoric acid, H3PO4, as the Al and P sources respectively, 2-butanol as the solvent and 1,3-butanediol as the chelating agent has been extensively used to prepare P-alumina catalytic supports. The study was particularly focused on the influence of the step of phosphorus introduction during the sol–gel procedure, on the amount of incorporated phosphorus and on the temperatures of drying and calcination of the gels to obtain the final mixed oxides. In addition to the classical chemical composition determinations and measurements of specific surface area, characterisations were mainly performed by using solid state 27Al and 31P MAS NMR. More precise determinations of the nature of aluminium sites were also obtained by 27Al MQMAS NMR. XRD was also used to a lesser extent.Poorly crystallised boehmite is present in the dried samples with aluminium mainly localised in octahedral sites whereas phosphorus is detected as monomeric and polymeric phosphates whose proportions depend on the phosphorus content. For the highest P/Al ratio (P/Al = 0.2) and when phosphorus is introduced with the hydrolysis water, the NMR data reveal the presence of bridged entities such as Altetra–O–P.After calcination at 500[thin space (1/6-em)]°C, badly crystallised γ-alumina is formed with octahedral, pentacoordinate and tetrahedral aluminium sites. For the highest phosphorus loading, a new aluminium site corresponding to the presence of AlPO4 is observed. The values of the second order quadrupolar effect for each species depend on the preparation procedure and characterise the degree of distortion of the aluminium sites.The drying temperature up to 200[thin space (1/6-em)]°C does not modify the gel structure whereas transformation of boehmite into alumina occurs above 350[thin space (1/6-em)]°C and, for the highest phosphorus content, there is partial destruction of alumina to form aluminium phosphate when the temperature of calcination is increased. Such an increase also has a non-negligible influence on the specific surface area which, however, remains as high as 350 m2 g–1 after calcination at 700[thin space (1/6-em)]°C.


References

  1. J. Grimblot, Catal. Today, 1998, 41, 111 CrossRef CAS.
  2. H. Topsøe, B. S. Clausen and F. E. Massoth, Hydrotreating Catalysis, Springer-Verlag, Berlin, Heidelberg, 1996, and references therein Search PubMed.
  3. R. Iwamoto and J. Grimblot, Stud. Surf. Sci. Catal., 1997, 106, 195 CAS.
  4. R. Iwamoto and J. Grimblot, J. Catal., 1997, 172, 252 CrossRef CAS.
  5. R. Iwamoto and J. Grimblot, Adv. Catal., 1999, 44, 417 CAS.
  6. M. Jian and R. Prins, Catal. Lett., 1995, 35, 193 CAS.
  7. S. Eijbouts, L. Van Gruijthuijsen, J. Volmer, V. H. J. de Beer and R. Prins, Stud. Surf. Sci. Catal., 1989, 50, 79.
  8. S. Eijsbouts, J. N. M. Van Gestel, J. A. R. Van Veen, V. H. J. de Beer and R. Prins, J. Catal., 1991, 131, 412 CAS.
  9. H. Topsøe, B. S. Clausen, N. Y. Topsøe and P. Zeuthen, Stud. Surf. Sci. Catal., 1989, 53, 77.
  10. E. Etienne, E. Ponthieu, E. Payen and J. Grimblot, J. Non-Cryst. Solids, 1992, 147–148, 764 CAS.
  11. L. Le Bihan, C. Mauchaussé, L. Duhamel, J. Grimblot and E. Payen, J. Sol–Gel Sci. Technol., 1994, 2, 837 Search PubMed.
  12. H. Krauss, R. Prins and A. P. M. Kentgens, J. Phys. Chem., 1996, 100, 16336 CrossRef CAS.
  13. R. Iwamoto, C. Fernandez, J. P. Amoureux and J. Grimblot, J. Phys. Chem. B, 1998, 102, 4342 CrossRef CAS.
  14. L. Le Bihan, E. Payen and J. Grimblot, to be published.
  15. J. P. Amoureux, C. Fernandez and S. Steuernagel, J. Magn. Reson. A, 1996, 123, 116 CrossRef CAS.
  16. C. Fernandez, J. P. Amoureux, J. M. Chezeau, L. Delmotte and H. Kesseler, Microporous Mater., 1996, 6, 331 CrossRef CAS.
  17. A. Medek, J. S. Hardwood and L. Frydman, J. Am. Chem. Soc., 1995, 117, 12779 CrossRef CAS.
  18. D. Massiot, B. Touzo, D. Trumeau, J. P. Coutures, J. Virlet, P. Florian and P. J. Grandinetti, Solid State Nucl. Magn. Reson., 1996, 6, 73 CrossRef CAS.
  19. J. P. Amoureux and C. Fernandez, Solid State Nucl. Magn. Reson., 1998, 10, 211 CrossRef CAS.
  20. Y. Kurokawa, Y. Kobayashi and S. Nakaka, Heterogeneous Chem. Rev., 1994, 1, 309 Search PubMed.
  21. E. C. DeCanio, J. C. Edwards, T. R. Scalzo, D. A. Storm and J. W. Bruno, J. Catal., 1991, 132, 498 CrossRef CAS.
  22. S. H. Risbud, R. J. Kirkpatrick, A. P. Tagliavore and B. Montez, J. Am. Ceram. Soc., 1987, 70, C10.
Click here to see how this site uses Cookies. View our privacy policy here.