ZnS nanoparticles doped with Cu(I) by controlling coordination and precipitation in aqueous solution

(Note: The full text of this document is currently only available in the PDF Version )

Lingdong Sun, Changhui Liu, Chunsheng Liao and Chunhua Yan


Abstract

A novel method for the synthesis of ZnS:Cu colloids has been studied in aqueous solution, in which the Cu+ ions were incorporated into the ZnS matrix by the assistance of a sulfur-containing ligand, i.e. thiourea or thiosulfate. The optical properties of the colloids (absorption, emission and excitation spectra) were studied. Compared with the bulk materials, the absorption band-edge is blue-shifted, which is attributed to a quantum size effect. The average ZnS nanoparticle size, deduced from the absorption spectra by an effective mass approximation, is about 4 nm. Upon excitation at 325 nm, a broad green emission band is observed, while for samples doped with 0.2% Cu, a blue emission band at 450 nm is also observed, which is quenched at higher dopant concentrations. It is concluded that Cu+ ions occupy Zn2+ sites in the lattice of ZnS nanocrystals and act as both green and blue luminescent centers at different dopant concentrations. The sulfur-containing ligand (thiourea or thiosulfate) plays an important role in the synthesis as both ligand and surfactant; it stabilizes the Cu+ ions, reduces the solubility difference between ZnS and Cu2S, and protects the particles surfaces.


References

  1. W. G. Becker and A. J. Bard, J. Phys. Chem., 1983, 87, 4888 CrossRef CAS.
  2. R. N. Bhargava, D. Gallagher, X. Hong and A. Nurmikko, Phys. Rev. Lett., 1994, 72, 416 CrossRef CAS.
  3. Y. L. Soo, Z. H. Ming, S. W. Huang and Y. H. Kao, Phys. Rev. B, 1994, 50, 7602 CrossRef CAS.
  4. D. Gallagher, W. E. Heady, J. M. Racz and R. N. Bhargava, J. Mater. Res., 1995, 10, 870 CAS.
  5. C. M. Jin, J. Q. Yu, L. D. Sun, K. Dou, S. G. Hu and S. H. Huang, J. Luminesc., 1996, 66&67, 315 Search PubMed.
  6. A. A. Khosravi, M. Kundu, L. Jatwa, S. K. Deshpande, U. A. Bhagwat, M. Sastry and S. K. Kulkani, Appl. Phys. Lett., 1995, 67, 2702 CrossRef CAS.
  7. C. Sihai, I. Takashi and K. Keisaku, J. Phys. Chem. B, 1998, 102, 6169 CrossRef.
  8. L. D. Sun, C. H. Yan, C. H. Liu, C. C. Liao, D. Li and J. Q. Yu, J. Alloys Compd., 1998, 234, 275.
  9. V. L. Colvin, M. C. Schlamp and A. P. Alivisatos, Nature, 1994, 370, 354 CrossRef CAS.
  10. M. Y. Gao, B. Richter, S. Kerstein and H. Mohwald, J. Phys. Chem. B, 1998, 102, 4096 CrossRef CAS.
  11. R. Rossetti, R. Hull, J. M. Gibson and L. E. Brus, J. Chem. Phys., 1985, 82, 552 CrossRef CAS.
  12. J. P. Zheng and H. S. Kwok, J. Opt. Soc. Am. B, 1992, 9, 2047 CAS.
  13. K. Sooklal, B. S. Cullum, S. M. Angel and C. J. Murphy, J. Phys. Chem., 1996, 100, 4551 CrossRef.
  14. Xurong Xu, Solid Luminescence, Chinese Academy of Science and University of Science and Technology, 1976 Search PubMed.
  15. T. Awatani and A. J. Mcquillan, J. Phys. Chem. B, 1998, 102, 4110 CrossRef CAS.
  16. K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, Wiley, New York, 3rd edn., 1978 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.