Structure of composites A1+x(A′xB1–x)O3 related to the 2H hexagonal perovskite: relation between composition and modulation

(Note: The full text of this document is currently only available in the PDF Version )

J. M. Perez-Mato, M. Zakhour-Nakhl, F. Weill and J. Darriet


Abstract

An idealized structural model is proposed for materials closely related to the 2H hexagonal perovskite and with general formula A3n + 3mA′nB3m + nO9m + 6n {or A1 + x(A′xB1 – x)O3, x = [0, 1/2]}. The structures of all these compounds, considered as commensurate or incommensurate modulated composites, can be described in a first approximation by a unique structure in the superspace formalism with occupational Crenel functions and sawtooth displacive modulations along the trigonal axis. The structural modulation has only two variable parameters: the modulation wave vector or misfit parameter, which is fixed by the compound composition, and the height difference between the octahedra and triangular prisms of O6 present in the trigonal [A′,B]O3 columns of the structure. Just by varying these parameters, the basic structural features of any compound with arbitrary composition parameter x are reproduced, including the two limiting cases ABO3 (2H perovskite) and A3A′BO6. For instance, the sequence of octahedra and prisms along the [A′,B]O3 columns can be considered a generalized Fibonacci chain and its dependence on composition follows a Farey tree rule which comes out directly from the model. A comparison with available experimental data, and in particular with some fully determined structures, demonstrates the soundness of the proposed scheme as a reference for such structures and the best starting point for their refinement. The model, although developed within the superspace formalism, is closely related to the polytype layer picture in direct space. The present structural analysis constitutes a new example of the efficiency of the 4-dimensional superspace formalism for describing in a unified form the structures of so-called ‘composition flexible’ systems.


References

  1. J. Darriet and M. A. Subramanian, J. Mater. Chem., 1995, 5, 543 RSC.
  2. J. A. Campá, E. Gutierrez-Puebla, M. A. Monge, I. Rasines and C. Ruiz-Valero, J. Solid State Chem., 1994, 108, 230 CrossRef CAS.
  3. W. T. A. Harrison, S. L. Hegwood and A. J. Jacobson, J. Chem. Soc., Chem. Commun., 1995, 1953 RSC.
  4. P. D. Battle, G. R. Blake, J. Darriet, J. G. Gore and F. Weill, J. Mater. Chem., 1997, 7, 1559 RSC.
  5. J. B. Claridge and H. C. Zur Loye, to be published.
  6. P. D. Battle, J. C. Burley, E. J. Cussen, J. Darriet and F. Weill, J. Mater. Chem., 1999, 9, 479 RSC.
  7. J. Campá, E. Gutierrez-Puebla, A. Monge, I. Rasines and C. Ruiz-Valero, J. Solid State Chem., 1996, 126, 27 CrossRef CAS.
  8. M. Evain, F. Boucher, O. Gourdon, V. Petricek, M. Dusek and P. Bezdicka, Chem. Mater., 1998, 10, 3068 CrossRef CAS.
  9. C. Dussarrat, J. Fompeyrine and J. Darriet, Eur. J. Solid State Chem., 1995, 32, 3 Search PubMed.
  10. P. D. Battle, G. R. Blake, J. Sloan and J. F. Vente, J. Solid State Chem., 1998, 136, 103 CrossRef CAS.
  11. F. Abraham, S. Minaud and C. Renard, J. Mater. Chem., 1994, 4, 1763 RSC.
  12. M. Huvé, C. Renard, F. Abraham, G. Van Tendeloo and S. Amelinckx, J. Solid State Chem., 1998, 135, 1 CrossRef CAS.
  13. F. Grasset, F. Weill and J. Darriet, J. Solid State Chem., 1998, 140, 194 CrossRef CAS.
  14. K. Ukei, A. Yamamoto, Y. Watanabe, T. Shishido and T. Fukuda, Acta Crystallogr., Sect. B., 1993, 49, 67 CrossRef.
  15. T. Shishido, K. Ukei and T. Fukuda, J. Alloys Compd., 1996, 237, 89 CrossRef CAS.
  16. J. J. Randall and L. Katz, Acta Crystallogr., 1959, 12, 519 CrossRef CAS.
  17. J. Darriet, F. Grasset and P. D. Battle, Mater. Res. Bull., 1997, 32, 139 CrossRef CAS.
  18. A. P. Wilkinson and A. K. Cheetham, Acta Crystallogr., Sect. C, 1989, 45, 1672 CrossRef.
  19. P. Núfiez, S. Trail and H. C. Zur Loye, J. Solid State Chem., 1997, 130, 35 CrossRef.
  20. J. B. Claridge, R. C. Layland, R. D. Adams and H. C. Zur Loye, Z. Anorg. Allg. Chem., 1997, 623, 1131 CAS.
  21. G. Blake, J. Sloan, J. P. Vente and P. D. Battle, Chem. Mater., 1998, 10, 3536 CrossRef CAS.
  22. M. Evain, Acta Crystallogr., Sect. B, to be published Search PubMed.
  23. S. Van Smaalen, Phys. Rev. B, 1991, 43, 11330 CrossRef.
  24. A. Janner and T. Janssen, Acta Crystallogr., Sect. A, 1980, 36, 399 CrossRef.
  25. A. Janner and T. Janssen, Acta Crystallogr., Sect. A, 1980, 36, 408 CrossRef.
  26. J. M. Perez-Mato, G. Madariaga, F. J. Zuniga and A. Garcia Arribas, Acta Crystallogr., Sect. A, 1987, 43, 216 CrossRef.
  27. S. Van Smaalen, Crystallogr. Rev., 1995, 4, 79 Search PubMed.
  28. R. L. Withers, S. Schmid and J. G. Thompson, Prog. Solid State Chem., 1998, 26, 1 CrossRef CAS.
  29. A. Katz and M. Duneau, J. Phys. (Paris), 1986, 47, 181 Search PubMed.
  30. P. M. De Wolff, Acta Crystallogr., Sect. A, 1974, 30, 777 CrossRef.
  31. A. Janner, T. Janssen and P. M. De Wolff, Acta Crystallogr., Sect. A, 1983, 39, 658 CrossRef.
  32. A. Yamamoto, T. Janssen, A. Janner and P. M. De Wolff, Acta Crystallogr., Sect. A, 1985, 41, 528 CrossRef.
  33. A. Janner and T. Janssen, Phys. Rev. B, 1977, 15, 643 CrossRef CAS.
  34. The Farey series of order 1025, Royal Society Mathematical Tables, volume I, University Press, Cambridge, 1950 Search PubMed.
  35. T. Janssen, Methods of Structural Analysis of Modulated Structures and Quasicrystals, ed. J. M. Perez-Mato, F. J. Zuniga and G. Madariaga, World Scientific Singapore, 1991, p. 47 Search PubMed.
  36. S. Lyonnard, G. Coddens, Y. Calvairac and D. Gratias, Phys. Rev. B, 1996, 53, 3150 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.