Low temperature synthesis of nanocrystalline Y3Al5O12 (YAG) and Ce-doped Y3Al5O12via different sol–gel methods

(Note: The full text of this document is currently only available in the PDF Version )

Michael Veith, Sanjay Mathur, Aivaras Kareiva, Mohammad Jilavi, Michael Zimmer and Volker Huch


Abstract

Nanocrystalline yttrium aluminium garnet (YAG, Y3Al5O12) and Ce-doped YAG ceramics were synthesized by two ‘soft chemistry' sol–gel processes using (i) mixtures of inorganic salts or oxides and (ii) mixtures of alkoxides of the respective elements. In the first approach the metal ions, generated by dissolving metal oxides or nitrates in acetic acid and/or water, were complexed by ethylene glycol to obtain the precursors for pure and doped YAG samples. In the alkoxide route monolithic gels were obtained by hydrolysis and condensation of a compositional mixture of Al, Y and Ce alkoxides in a PriOH solution. The molecular level mixing and the tendency of partially hydrolysed alkoxide species to form extended networks of cross-linked metal centers facilitates the structure evolution thereby lowering the crystallization temperature, in the latter case. The X-ray diffraction (XRD) patterns of the ceramic sintered at 700[thin space (1/6-em)]°C were identical with the stoichiometric YAG composition which is the lowest temperature reported for the synthesis of crystalline and single phase Y3Al5O12 while well developed YAG phases in the non-alkoxide synthesis were obtained only at 1000[thin space (1/6-em)]°C. Cerium doped YAG powders (CeO2 + Y3Al5O12) were synthesized using [NH4]2[Ce(NO3)6] (8 mol%) and [Ce3(OBut)9(ButOH)2] (5 mol%), as dopants. A homogeneous distribution of cerium in the YAG lattice was achieved in both cases. The thermal behaviour, phase transformations, composition and microstructural features in the gels and polycrystalline samples were studied by TG/DTA, XRD, FT-IR, solid-state 27Al MAS NMR spectroscopy, SEM, TEM, energy dispersive X-ray analysis and high resolution electron microscopy studies. The quality of the resulting products (homogeneity, crystallization temperature, grain size, grain size distribution, etc.) and economical aspects (synthetic skill, cost of precursors, etc.) of the two approaches are discussed.


References

  1. J. E. Geusic, H. M. Marcos and L. G. van Uitert, Appl. Phys. Lett., 1964, 4, 182 CAS.
  2. J. Machan, R. Kurtz, M. Bess and M. Birnbaum, J. Opt. Soc. Am., 1987, 20, 134 Search PubMed.
  3. A. P. Shkadarevich, J. Opt. Soc. Am., 1989, 22, 60 Search PubMed.
  4. T. Izumitani, Bull. Ceram. Soc. Jpn., 1991, 26, 108 Search PubMed.
  5. A. Ikesue, K. Kamata and K. Yoshida, J. Am. Ceram. Soc., 1995, 78, 2545 CAS.
  6. A. Ikesue, K. Yoshida and K. Kamata, J. Am. Ceram. Soc., 1996, 79, 507 CAS.
  7. B. Anvari, B. S. Tanenbaum, W. Hoffman, S. Said, T. E. Milner, L. H. L. Liaw and J. S. Nelson, Phys. Medic. Biol., 1997, 42, 265 Search PubMed.
  8. A. H. Chokshi and J. R. Porter, J. Am. Ceram. Soc., 1986, 69, C-37.
  9. T. A. Parthasarathy, T. Mah and K. Keller, Ceram. Eng. Sci. Proc., 1991, 12, 1767 Search PubMed.
  10. G. S. Corman, Ceram. Eng. Sci. Proc., 1991, 12, 1745 Search PubMed.
  11. G. S. Corman, J. Mater. Sci. Lett., 1993, 12, 379 CAS.
  12. B. H. King, Y. Liu, R. Laine and J. W. Halloran, Ceram. Eng. Sci. Proc., 1993, 14, 639 Search PubMed.
  13. G. N. Morscher, K. C. Chen and K. S. Mazdiyasni, Ceram. Eng. Sci. Proc., 1994, 15, 181 Search PubMed.
  14. T. Rouxel, J. F. Baumard, J. L. Besson, F. Valin and M. Boncoeur, Eur. J. Solid State Inorg. Chem., 1995, 32, 617 CAS.
  15. W. R. Blumenthal and D. S. Phillips, J. Am. Ceram. Soc., 1996, 79, 1047 CAS.
  16. J.-M. Yang, S. M. Jeng and S. Chang, J. Am. Ceram. Soc., 1996, 79, 1218 CAS.
  17. A. Kareiva, C. J. Harlan, D. B. MacQueen, R. L. Cook and A. R. Barron, Chem. Mater., 1996, 8, 2331 CrossRef CAS.
  18. J. L. Bates and J. E. Garnier, J. Am. Ceram. Soc., 1981, 64, C-138 CAS.
  19. B. H. King and J. W. Halloran, J. Am. Ceram. Soc., 1995, 78, 2141 CAS.
  20. Y. Liu, Z.-F. Zhang, B. King, J. Halloran and R. M. Laine, J. Am. Ceram. Soc., 1996, 79, 385 CAS.
  21. A. M. George, N. C. Mishra, M. S. Nagar and N. C. Jayadevan, J. Therm. Anal., 1996, 47, 1701 Search PubMed.
  22. M. Yada, M. Ohya, M. Machida and T. Kijima, Chem. Commun., 1998, 1941 RSC.
  23. C. J. Harlan, A. Kareiva, D. B. MacQueen, R. Cook and A. R. Barron, Adv. Mater., 1997, 9, 68 CAS.
  24. G. Gowda, J. Mater. Sci. Lett., 1986, 5, 1029 CAS.
  25. R. S. Hay, J. Mater. Res., 1993, 8, 578 CAS.
  26. R. Manalert and M. N. Rahaman, J. Mater. Sci., 1996, 31, 3453 CAS.
  27. M. Veith, S. Mathur and C. Mathur, Polyhedron, 1998, 17, 1005 CrossRef CAS.
  28. M. Veith and S. Kneip, J. Mater. Sci. Lett., 1994, 13, 335 CrossRef CAS.
  29. M. Veith, S. Faber, R. Hempelman, S. Janssen, J. Prewo and H. Eckerlebe, J. Mater. Sci., 1996, 31, 2009 CrossRef CAS.
  30. M. Veith, S. Kneip, A. Jungmann and S. Hüfner, Z. Anorg. Allg. Chem., 1997, 623, 1507 CrossRef CAS.
  31. M. Veith, A. Altherr, N. Lecerf, S. Mathur, K. Valtchev and E. Fritscher, Nanostr. Mater. Proc. NANO, 1999, 98, 191 Search PubMed.
  32. M. Veith, A. Altherr and H. Wolfanger, Adv. Mater., 1999, 5, 87 CrossRef CAS.
  33. A. Kareiva, M. Karppinen and L. Niinistö, J. Mater. Chem., 1994, 4, 1267 RSC.
  34. I. Bryntse and A. Kareiva, Physica C, 1995, 251, 115 CrossRef CAS.
  35. M. K. Van Bael, E. Knaepen, A. Kareiva, I. Schildermans, R. Nouwen, J. D'Haen, M. D'Olieslaeger, C. Quaeyhaegens, D. Franco, J. Yperman, J. Mullens and L. C. Van Poucke, Supercond. Sci. Technol., 1998, 11, 82 CrossRef CAS.
  36. A. Kareiva, I. Bryntse, M. Karppinen and L. Niinistö, J. Solid State Chem., 1996, 121, 356 CrossRef CAS.
  37. M. F. Lappert, P. P. Power, A. R. Sanger and R. C. Srivastava, Metal and Metalloid Amides, Wiley & Sons, New York, 1980 Search PubMed.
  38. D. C. Bradley, R. C. Mehrotra and D. P. Gaur, Metal Alkoxides, Academic Press, London, 1978 Search PubMed.
  39. G. M. Sheldrick, (a) SHELXS 86, Program for Crystal Structure Determination, University of Göttingen, 1986; (b) SHELXL 97, Program for Crystal Structure Determination, University of Göttingen, 1997.
  40. R. C. Mehrotra, Chemtracts, 1990, 2, 338 Search PubMed.
  41. C. D. Chandler, C. Roger and M. Hampden-Smith, J. Chem. Rev., 1993, 93, 1205 Search PubMed.
  42. D. L. Segal, Chemical Synthesis of Advanced Materials, Cambridge University Press, Cambridge, 1989 Search PubMed.
  43. C. J. Brinker and G. W. Scherrer, Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing, Academic Press, New York, 1990 Search PubMed.
  44. L. L. Hench and J. K. West, Chem. Rev., 1990, 90, 33 CrossRef CAS.
  45. D. L. Segal, J. Mater. Chem., 1997, 7, 1297 RSC.
  46. R. C. Mehrotra and A. Singh, Chem. Soc. Rev., 1996, 1 RSC.
  47. O. Poncelet, W. J. Sartain, L. G. Hubert-Pfalzgraf, K. Folting and K. G. Caulton, Inorg. Chem., 1989, 28, 263 CrossRef CAS.
  48. D. C. Bradley, H. Chudzynska, D. M. Frigo, M. E. Hammond, M. B. Hursthouse and M. A. Mazid, Polyhedron, 1990, 9, 719 CrossRef CAS.
  49. R. C. Mehrotra, A. Singh and U. M. Tripathi, Chem. Rev., 1991, 91, 1287 CrossRef CAS.
  50. S. Mathur and M. Veith, unpublished work.
  51. G. J. Westin, Sol-Gel Sci. Technol., 1999, 13, 125 Search PubMed.
  52. M. Veith, S. Mathur, V. Huch and T. Decker, Eur. J. Inorg. Chem., 1998, 1327 CrossRef CAS.
  53. M. Veith, S. Mathur, N. Lecerf, V. Huch, T. Decker, H. P. Beck, W. Eiser and R. Haberkorn, J. Sol-Gel Sci. Technol., 1999, in the press Search PubMed.
  54. A. Kareiva, unpublished work.
  55. P. S. Devi and H. S. Maiti, J. Solid State Chem., 1994, 109, 35 CrossRef CAS.
  56. K. Nakanishi, Infrared Absorption Spectroscopy, Holden Day, San Francisco, 1977 Search PubMed.
  57. L. M. Seaverson, S. Q. Luo, P. L. Chien and J. F. Mcclelland, J. Am. Ceram. Soc., 1986, 69, 243.
  58. P. Apte, H. Burke and H. Pickup, J. Mater. Res., 1992, 7, 706 CAS.
  59. V. Saraswati, G. V. N. Rao and G. V. Rama Rao, J. Mater. Sci., 1987, 22, 2529 CAS.
  60. Ph. Colomban, J. Mater. Sci., 1989, 24, 3002 CAS.
  61. JCPDS Powder Diffraction Data base, Joint Committee on Powder Diffraction Standards, International Center of Diffraction Data, Swarthmore, PA, 1990.
  62. M. E. Smith, Appl. Magn. Reson., 1993, 4, 1 CrossRef CAS.
  63. W. Jung, S. Ahn and D. Kim, J. Mater. Chem., 1998, 8, 1869 RSC.
  64. D. R. Mullins, S. H. Overbury and D. R. Huntley, Surf. Sci., 1998, 409, 307 CrossRef CAS.
  65. A. Pfau and K. D. Schierbaum, Surf. Sci., 1994, 321, 71 CrossRef CAS.
  66. H. Heikkinen, L. Johansson, E. Nykaenen and L. Niinisto, Appl. Surf. Sci., 1998, 133, 205 CrossRef CAS.
  67. E. Paparazzo, Surf. Sci., 1990, 234, L253 CrossRef CAS.
  68. Y. Zhou and M. N. Rahman, Acta. Mater., 1997, 45, 3635 CrossRef CAS.
  69. S. R. Rotman, R. P. Tandon and H. L. Tuller, J. Appl. Phys., 1985, 57, 1951 CrossRef CAS.
  70. Z. Qian and S. L. Shi, Proc. 4th Int. Conf. Nanostr. Mater., 1998 Search PubMed.
  71. A. R. West, Solid State Chemistry and its Applications, Wiley, Chichester, New York, 1984 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.