Metal-rich polyantimonides: internal competition between M–M and Sb–Sb and heteroatomic M–Sb interactions in (Zr,V)13Sb10 and (Zr,V)11Sb8 (M = Zr,V)

(Note: The full text of this document is currently only available in the PDF Version )

Holger Kleinke


Abstract

The title compounds are accessible by arc-melting of suitable mixtures of Zr, V and ZrSb2. Their crystal structures were determined via single crystal measurements on an IPDS diffractometer. Depending on the M∶Sb ratio (M = Zr, V; M∶Sb = 13∶10 or 11∶8), the phases crystallize in two related structure types, namely Zr7.5V5.5Sb10 and Cr11Ge8. The lattice dimensions of Zr7.46(5)V3.54Sb8 are a = 1514.7(1), b = 570.77(5), c = 1811.1(2) pm, V = 1565.8(2) × 106 pm3 (Pnma, Z = 4). The structures may be considered as intergrowths of (distorted) fragments of the W5Si3 and NiAs structure types. In addition to M–Sb and homonuclear (and heteronuclear) M–M bonds, Sb–Sb bonding interactions, with Sb–Sb distances shorter than in elemental antimony, occur in the linear Sb chains of the W5Si3-analogous structural motifs. The entropy-stabilized phases decompose by annealing at lower temperatures. The metallic character was confirmed via extended Hückel calculations as well as measurements of the electrical resistivities.


References

  1. P. A. Maggard and J. D. Corbett, Angew. Chem., Int. Ed. Engl., 1997, 36, 1974 CrossRef CAS.
  2. P. A. Maggard and J. D. Corbett, Inorg. Chem., 1998, 37, 814 CrossRef CAS.
  3. T. E. Weirich, A. Simon and R. Pöttgen, Z. Anorg. Allg. Chem., 1996, 622, 630 CAS.
  4. T. E. Weirich, R. Ramlau, A. Simon and S. Hovmöller, Nature, 1996, 382, 144 CrossRef CAS.
  5. G. Örlygsson and B. Harbrecht, Inorg. Chem., 1999, 38, 3377 CrossRef.
  6. H. Kleinke and H. F. Franzen, Angew. Chem., Int. Ed. Engl., 1996, 35, 1934 CrossRef CAS.
  7. B. Harbrecht, M. Conrad, T. Degen and R. Herbertz, J. Alloys Compd., 1997, 255, 178 CrossRef CAS.
  8. R. L. Abdon and T. Hughbanks, Angew. Chem., Int. Ed. Engl., 1994, 33, 2328 CrossRef.
  9. S.-J. Kim, K. S. Nanjundaswamy and T. Hughbanks, Inorg. Chem., 1991, 30, 159 CrossRef CAS.
  10. B. Harbrecht, Angew. Chem., Int. Ed. Engl., 1989, 28, 1660 CrossRef.
  11. M. Conrad, F. Krumeich and B. Harbrecht, Angew. Chem., Int. Ed., 1998, 37, 1383 CrossRef.
  12. M. Conrad, Ph.D. thesis, University of Dortmund, Germany, 1997.
  13. E. Garcia and J. D. Corbett, J. Solid State Chem., 1988, 73, 440 CAS.
  14. E. Garcia and J. D. Corbett, Inorg. Chem., 1988, 27, 2353 CrossRef CAS.
  15. H. Kleinke and C. FelserJ. Alloys Compd. in press Search PubMed.
  16. H. Kleinke, Inorg. Chem., 1999, 38, 2931 CrossRef CAS.
  17. J. Steinmetz, B. Malaman and B. Roques, C. R. Seances Acad. Sci., Ser. C, 1977, 284, 499 Search PubMed.
  18. H. Kleinke, Chem. Commun., 1998, 2219 RSC.
  19. H. Kleinke, Eur. J. Inorg. Chem., 1998, 1369 CrossRef CAS.
  20. Zr5VSb3 was identified based on EDX investigationsa and a Guinier diagram by analogy to Zr5ZSb3 with Z=Fe, Co, Ni, etc., see: E. Garcia, H. C. Ku, R. N. Shelton and J. D. Corbett, Solid State Commun., 1988, 65, 757 Search PubMed.
  21. E. Garcia and J. D. Corbett, J. Solid State Chem., 1988, 73, 452 CrossRef CAS.
  22. G. M. Sheldrick, SHELXS-86, University of Göttingen, Germany, 1986.
  23. G. M. Sheldrick, SHELXL-97, University of Göttingen, Germany, 1997.
  24. W. C. Hamilton, Acta Crystallogr., 1965, 18, 502 CrossRef CAS.
  25. R. Hoffmann, J. Chem. Phys., 1963, 39, 1397 CrossRef CAS.
  26. M.-H. Whangbo and R. Hoffmann, J. Am. Chem. Soc., 1978, 100, 6093 CrossRef CAS.
  27. Program EHMACC, adapted for use on a PC by M. Köckerling, Gesamthochschule Duisburg, Germany, 1997.
  28. X. Yao, G. A. Marking and H. F. Franzen, Ber. Bunsen-Ges. Phys. Chem., 1992, 96, 1552 CAS.
  29. H. F. Franzen and M. Köckerling, Prog. Solid State Chem., 1995, 23, 265 CrossRef CAS.
  30. X. Yao and H. F. Franzen, J. Am. Chem. Soc., 1991, 113, 1426 CrossRef CAS.
  31. X. Yao, G. J. Miller and H. F. Franzen, J. Alloys Compd., 1992, 183, 7 CrossRef CAS.
  32. X. Yao and H. F. Franzen, J. Solid State Chem., 1990, 86, 88 CAS.
  33. X. Yao and H. F. Franzen, Z. Anorg. Allg. Chem., 1991, 589/599, 353 CrossRef.
  34. G. A. Marking and H. F. Franzen, Chem. Mater., 1993, 5, 678 CrossRef CAS.
  35. H. Kleinke and H. F. Franzen, J. Am. Chem. Soc., 1997, 119, 12824 CrossRef CAS.
  36. P. Israiloff, H. Völlenke and A. Wittmann, Monatsh. Chem., 1974, 105, 1387 CAS.
  37. L. Pauling, The Nature of the Chemical Bond, Cornell University Press, Ithaca, NY, 3rd edn., 1948 Search PubMed.
  38. W. Hönle and H.-G. von Schnering, Z. Kristallogr., 1981, 155, 307.
  39. N. Korber and F. Richter, Angew. Chem., Int. Ed. Engl., 1997, 36, 1512 CrossRef CAS.
  40. U. Bolle and W. Tremel, J. Chem. Soc., Chem. Commun., 1992, 91 RSC.
  41. R. S. Mulliken, J. Chem. Phys., 1955, 23, 2343 CAS.
  42. K. W. Klinkhammer and P. Pykkö, Inorg. Chem., 1995, 34, 4134 CrossRef CAS.
  43. H. Bürger, R. Eujen, G. Becker, O. Mundt, M. Westerhausen and C. Witthauer, J. Mol. Struct., 1983, 98, 265 CrossRef.
  44. H. Kleinke, unpublished calculations.
Click here to see how this site uses Cookies. View our privacy policy here.