Synthesis of lithium manganese oxide in different lithium-containing fluxes

(Note: The full text of this document is currently only available in the PDF Version )

Xiaojing Yang, Weiping Tang, Hirofumi Kanoh and Kenta Ooi


Abstract

By using a needle-like raw material γ-MnOOH as a Mn-source, single crystals of lithium manganese oxides were synthesized in a variety of lithium-containing fluxes including LiNO3, Li2CO3, LiOH, LiCl and Li2SO4. Needle-like Li1.33Mn1.67O4 and Li2MnO3 crystals and plate-like polyhedral Li2MnO3 crystals were obtained in an LiNO3 flux heated within different temperature ranges (300–400, 500–750 and 900–1000[thin space (1/6-em)]°C, respectively). Not only polyhedral and film Li2MnO3 but also octahedral LiMn2O4 single crystals were obtained in an LiCl flux by use of different shaped containers to control the exposure to the atmosphere. Orthorhombic LiMnO2 crystals with tube- and rod-like shapes could be obtained at the bottom of the LiCl melt at 1000[thin space (1/6-em)]°C. The lithiation reaction (at low temperature) and dissolution–precipitation controlled growth (at high temperature) of Li2MnO3 were also observed in Li2CO3 and LiOH fluxes. According to the reaction mechanism, the Li-containing fluxes investigated can be classified into four types: (1) LiNO3, oxidizing flux; (2) LiCl, non-oxide flux; (3) LiOH and Li2CO3, oxidic, but non-oxidizing fluxes; and (4) Li2SO4, no reaction.


References

  1. S. L. Brock, N. Duan, Z. R. Tian, O. Giraldo, H. Zhou and S. L. Suib, Chem. Mater., 1998, 10, 2619 CrossRef CAS.
  2. Q. Feng, H. Kanoh and K. Ooi, J. Mater. Chem., 1999, 9, 319 RSC.
  3. P. Strobel, J.-P. Levy and J.-C. Joubert, J. Cryst. Growth, 1984, 66, 257 CrossRef CAS.
  4. K. Ota, M. Nakamura, H. Yokokawa, H. Yoshitake, Y. Abe and N. Kamiya, Denki Kagaku, 1994, 62, 165 Search PubMed.
  5. W. Tang, H. Kanoh and K. Ooi, J. Solid State Chem., 1999, 142, 19 CrossRef CAS.
  6. W. Tang, H. Kanoh and K. Ooi, in Symposium at the 9th Meeting of the Materials Research Society of Japan, The Materials Research Society of Japan, Kawasaki-shi KSP, 1997, p. 81 Search PubMed.
  7. W. Tang, H. Kanoh and K. Ooi, Jpn. Pat., No.9-218898, 9-270192, 1997 Search PubMed.
  8. R. D. W. Kemmitt, in Comprehensive Inorganic Chemistry, ed. J. C. Bailar, Jr., H. J. Emeleus, S. R. Nyholm and A. F. Trotman-Dickenson, Pergamon, Oxford, 1973, p. 772 Search PubMed.
  9. M. Sato, K. Matsuki, M. Sugawara and T. Endo, Nippon Kagaku Kaishi, 1973, 9, 1655 (in Japanese).
  10. Q. Feng, Y. Miyai, H. Kanoh and K. Ooi, Langmuir, 1992, 8, 1861 CrossRef CAS.
  11. V. M. Jansen and R. Hoppe, Z. Anorg. Allg. Chem., 1973, 397, 279 CrossRef.
  12. The Chemical Society of Japan, Kagaku Binran, Kiso-hen-II, Maruzen, Tokyo, 1984(in Japanese) Search PubMed.
  13. G. Blasse, Philips Res. Rep., Suppl., 1964, 3, 1 Search PubMed.
  14. M. H. Rossouw, A. de Kock, L. A. de Picciotto, M. M. Thackeray, W. I. F. David and R. M. Ibberson, Mater. Res. Bull., 1990, 25, 173 CrossRef.
  15. G. Pistoia, A. Antonini, D. Zane and M. Pasquali, J. Power Sources, 1995, 56, 37 CrossRef CAS.
  16. W. I. F. David, M. M. Thackeray, P. G. Bruce and J. B. Goodenough, Mater. Res. Bull., 1984, 19, 99 CrossRef CAS.
  17. L. A. H. MacLean, C. Poinsignon, J. M. Amarilla, F. L. Cras and P. Strobel, J. Mater. Chem., 1995, 5, 1183 RSC.
  18. R. G. Burns and V. M. Burns, in Manganese Dioxide Symposium, ed. B. Schumm, Jr., H. M. Joseph and A. Kozawa, I. C. MnO2 Sample Office, Ohio, 1981, vol. 2, p. 97 Search PubMed.
  19. O. Knacke, O. Kubaschewski and K. Hesselmann, Thermochemical Properties of Inorganic Substances, Springer-Verlag, Berlin, 2nd edn., 1991 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.