Powder neutron diffraction studies of three low thermal expansion phases in the NZP family: K0.5Nb0.5Ti1.5(PO4)3, Ba0.5Ti2(PO4)3 and Ca0.25Sr0.25Zr2(PO4)3

(Note: The full text of this document is currently only available in the PDF Version )

David A. Woodcock, Philip Lightfoot and Ron I. Smith


Abstract

We present the results of variable temperature neutron powder diffraction studies of three low thermal expansion materials belonging to the NZP family; K0.5Nb0.5Ti1.5(PO4)3, Ba0.5Ti2(PO4)3 and Ca0.25Sr0.25Zr2(PO4)3. Each of these structures has half occupancy of the crystallographic site for the large cation (MI = K, Ba or Ca/Sr), but differ in that the vacancies on this site are disordered in the former two (space group <$$>\[ R\overline 3 c \]<$$>) but ordered in the latter (space group <$$>\[ R\overline 3 \]<$$>). The thermal expansion behaviour is quantified from parameters obtained by Rietveld structure refinement, and is described in terms of rotations and distortions of linked MO6 (M = Nb, Ti, Zr) and PO4 polyhedra. The driving force for the anisotropic low thermal expansion behaviour is found to be in the thermal expansivity of the MI–O bonds. This behaviour is intricately linked to the order/disorder behaviour of the MI sites, as shown by a comparison of the three title structures, together with those of NaTi2(PO4)3 in which the MI sites are completely filled, and Sr0.5Ti2(PO4)3, in which the MI sites are half-occupied in an ordered manner.


References

  1. J. P. Boilot, J. P. Salanie, G. Desplanches and D. Le Potier, Mater. Res. Bull., 1979, 14, 1469 CrossRef CAS.
  2. D. A. Woodcock, P. Lightfoot, P. A. Wright, L. A. Villaescusa, M.-J. Díaz-Cabañas and M. A. Camblor, J. Mater. Chem., 1999, 9, 349 RSC.
  3. D. A. Woodcock, P. Lightfoot, L. A. Villaescusa, M.-J. Díaz-Cabañas, M. A. Camblor and D. Engberg, Chem. Mater., in press Search PubMed.
  4. M. P. Attfield and A. W. Sleight, Chem. Commun., 1998, 601 RSC.
  5. S. H. Park, R. W. Groβ Kunstleve, H. Graetsch and H. Gies, Stud. Surf. Sci. Catal., 1997, 105, 1989.
  6. M. P. Attfield and A. W. Sleight, Chem. Mater., 1998, 10, 2013 CrossRef CAS.
  7. J. S. O. Evans, T. A. Mary, T. Vogt, M. A. Subramanian and A. W. Sleight, Chem. Mater., 1996, 8, 2809 CrossRef CAS.
  8. J. S. O. Evans, T. A. Mary and A. W. Sleight, J. Solid State Chem., 1998, 137, 148 CrossRef CAS.
  9. D. Woodcock, P. Lightfoot and C. Ritter, J. Solid State Chem., in press Search PubMed.
  10. R. Roy, D. K. Agrawal and H. A. McKinstry, Annu. Rev. Mater. Sci., 1989, 19, 59 Search PubMed.
  11. S. Y. Limaye, D. K. Agrawal and H. A. McKinstry, J. Am. Ceram. Soc., 1987, 70, C232.
  12. D. K. Liu, L.-J. Lin and C.-J. Chen, J. Appl. Crystallogr., 1995, 28, 508 CrossRef CAS.
  13. J. Alamo, Solid State Ionics, 1993, 63–65, 547 CrossRef CAS.
  14. J. L. Rodrigo, P. Carrasco and J. Alamo, Mater. Res. Bull., 1989, 24, 611 CrossRef CAS.
  15. J. Alamo and J. L. Rodrigo, Solid State Ionics, 1993, 63–65, 678 CrossRef CAS.
  16. J. Alamo and J. L. Rodrigo, Mater. Res. Bull., 1992, 27, 1091 CAS.
  17. D. A. Woodcock, P. Lightfoot and C. Ritter, Chem. Commun., 1998, 107 RSC.
  18. P. Lightfoot, D. A. Woodcock, J. D. Jorgensen and S. Short, J. Inorg. Mater., 1999, 1, 53 Search PubMed.
  19. K. V. G. Kutty, R. Asuvathraman and R. Sridharan, J. Mater. Sci., 1998, 33, 4007 CrossRef CAS.
  20. C. Y. Huang, D. K. Agrawal and H. A. McKinstry, J. Mater. Sci., 1995, 30, 3509 CrossRef CAS.
  21. R. I. Smith and S. Hull, User Guide for the Polaris Powder Diffractometer at ISIS, Report RAL-TR-97-038, Rutherford Appleton Laboratory, 1997.
  22. A. C. Larson and R. B. Von Dreele, Los Alamos National Laboratory Report No. LA-UR-86–748, 1987.
Click here to see how this site uses Cookies. View our privacy policy here.