Host–guest complexation: a convenient route to polybithiophene composites by electrosynthesis in aqueous media. Synthesis and characterization of a new material containing cyclodextrins

(Note: The full text of this document is currently only available in the PDF Version )

Corinne Lagrost, Kathleen I. Chane Ching, Jean-Christophe Lacroix, Salah Aeiyach, Mohamed Jouini, Pierre-Camille Lacaze and Jean Tanguy


Abstract

An inclusion compound with hydroxypropyl-β-cyclodextrin (HPβCD) as host molecule has been used to electropolymerize bithiophene in aqueous medium. The complexation of bithiophene by HPβCD has been investigated by fluorescence, showing that BT molecules are tightly bound to cyclodextrin hosts. The electrochemical behaviour of this inclusion compound is irreversible in aqueous solution in the presence of HPβCD. The anodic electropolymerization of the BT–HPβCD complex has been performed in aqueous medium under galvanostatic or potentiodynamic conditions. Characterization of the deposited films supports the notion that polybithiophene (PBT) composites are formed. Although they show the usual features of PBT, the structure of the films appears to be considerably modified by the presence of cyclodextrins within the material but not grafted onto the polymeric backbone.


References

  1. (a) Handbook of Conducting Polymers Vol. 1 and 2, ed. T. A. Skotheim, Marcel Dekker, New York, 1986 Search PubMed; (b) Handbook of organic conductive molecules and polymers, Vol. 2, ed. H. S. Nalwa, John Wiley and Sons, New York, 1997 Search PubMed.
  2. J. L. Brédas and R. S. Silbey, in Conjugated Polymers, Kluwer, Dordrecht, 1991, ch. 1 Search PubMed.
  3. G. Tourillon, in Handbook of Conducting Polymers(ref. 1) Search PubMed.
  4. J. Roncali, A. Yassar and F. Garnier, J. Chem. Soc., Chem. Commun., 1988, 581 RSC.
  5. E. A. Bazzaoui, S. Aeiyach and P. C. Lacaze, J. Electroanal. Chem., 1994, 63, 364.
  6. M. Lapkowsky, G. Bidan and M. Fournier, Synth. Met., 1991, 41, 407 CrossRef.
  7. N. Sakmeche, J. J. Aaron, M. Fall, S. Aeiyach, M. Jouini, J. C. Lacroix and P. C. Lacaze, Chem. Commun., 1996, 2723 RSC.
  8. E. A. Bazzaoui, S. Aeiyach and P. C. Lacaze, Synth. Met., 1996, 83, 159 CrossRef CAS.
  9. K. A. Connors, Chem. Rev., 1997, 97, 1325 CrossRef CAS.
  10. T. Matsue, D. H. Evans, T. Osa and N. Kobayashi, J. Am. Chem. Soc., 1985, 107, 3411 CrossRef CAS.
  11. A. Mirzoian and A. E. Kaifer, Chem. Eur. J., 1997, 3, 1052 CrossRef CAS.
  12. Y. Wang, S. Mendoza and A. E. Kaifer, Inorg. Chem., 1998, 37, 317 CrossRef CAS.
  13. H. Ogata, K. Sanui and J. Wada, J. Polym. Sci., Polym. Lett., 1976, 14, 459 Search PubMed.
  14. M. B. Steinbrunn and G. Wenz, Angew. Chem., Int. Ed. Engl., 1996, 35, 2139 CrossRef CAS.
  15. A. Harada, J. Li and M. Kamachi, J. Am. Chem. Soc., 1994, 116, 3192 CrossRef CAS.
  16. C. Lagrost, J. C. Lacroix, S. Aeiyach, M. Jouini, K. I. Chane-Ching and P. C. Lacaze, Chem. Commun., 1998, 489 RSC.
  17. X. Shen, M. Belletête and G. Durocher, Chem. Phys. Lett., 1998, 298, 201 CrossRef CAS.
  18. Care was taken in order to compensate for the solution resistance. However, a contribution from residual uncompensated resistance cannot be totally ruled out.
  19. S. Mendoza, P. D. Davidov and A. E. Kaifer, Chem. Eur. J., 1998, 4, 864 CrossRef CAS.
  20. L. Nadjo and J. M. Savéant, J. Electroanal. Chem., 1973, 48, 113 CrossRef CAS.
  21. L. Guyard, M. Jouini, P. Hapiot, J. C. Lacroix, C. Lagrost and P. Neta, J. Phys. Chem. A, 1999, 103, 4009 CrossRef CAS.
  22. The electrochemical techniques usually used for these kinetics studies are powerful tools but they suffer from difficulties when the electrode surface is modified during the oxidation process as in our case (irreversible wave). Laser flash photolysis and pulse radiolysis are additional independent methods that allow study of the production of radicals and determination of rate constants of their ensuing reactions.
  23. C. Lagrost, J. Tanguy, J. C. Lacroix, S. Aeiyach, M. Jouini, K. I. Chane-Ching and P. C. Lacaze, J. Electroanal. Chem., submitted Search PubMed.
  24. M. A. Akimoto, Y. Furukawa, M. Takeuchi, I. Harada, Y. Soma and M. Soma, Synth. Met., 1986, 15, 353 CrossRef CAS.
  25. J. L. Sauvageol, D. Chenouni, J. P. Lère-Porte, C. Chorro, B. Moukala and J. Petrissans, Synth. Met., 1990, 38, 33.
  26. J. L. Brédas, R. Silbey, D. S. Boudreaux and R. R. Chance, J. Am. Chem. Soc., 1983, 105, 6555 CrossRef CAS.
  27. B. L. Funt and S. V. Lowen, Synth. Met., 1985, 11, 129 CAS.
  28. D. D. Cunningham, A. Galal, C. V. Pham, E. T. Lewis, A. Burkhardt, L. Laguren-Davidson, A. Nkansah, O. Y. Ataman, H. Zimmer and H. B. Mark, Jr., J. Electrochem. Soc., 1988, 135, 2750 CAS.
  29. J. Roncali, F. Garnier, M. Lemaire and R. Garreau, Synth. Met., 1986, 15, 323 CrossRef CAS.
  30. A. Yassar, D. Delabouglise, M. Hmyene, B. Nessakh, G. Horowitz and F. Garnier, Adv. Mater., 1992, 4, 490.
  31. W. ten Hoeve, H. Wynberg, E. E. Havinga and E. W. Meijer, J. Am. Chem. Soc., 1991, 113, 5887 CrossRef CAS.
  32. S. Rughooputh, S. Hotta, A. J. Heeger and F. Wudl, J. Polym. Sci., Part B, 1987, 25, 1071 CAS.
  33. F. Garnier, A. Yassar, R. Hajlaoui, G. Horowitz, F. Deloffre, B. Servet, S. Ries and P. Alnot, J. Am. Chem. Soc., 1993, 115, 8716 CrossRef CAS.
  34. G. Tourillon and F. Garnier, J. Electroanal. Chem., 1984, 161, 51 CrossRef.
  35. G. Barbarella, M. Zambianchi, A. Bongini and L. Antolini, Adv. Mater., 1993, 5, 835.
  36. L. Torsi, Synth. Met., 1991, 41–43, 575 CrossRef.
  37. Y. Furukawa, M. Akimoto and I. Harada, Synth. Met., 1987, 18, 151 CrossRef.
  38. G. Zotti, G. Schiavon, A. Berlin and G. Pagani, Chem. Mater., 1993, 5, 620 CrossRef CAS.
  39. C. Lagrost, J. C. Lacroix, K. I. Chane-Ching, M. Jouini, S. Aeiyach and P. C. Lacaze, Adv. Mater., 1999, 11, 664 CrossRef CAS.
  40. K. I. Chane-Ching, J. C. Lacroix, M. Jouini and P. C. Lacaze, J. Mater. Chem., 1999, 9, 1065 RSC.
  41. G. Tourillon, in Handbook of Conducting Polymers(ref. 1), p. 318 Search PubMed.
  42. E. T. Kang, K. G. Neoh and K. L. Tan, Phys. Rev. B, 1991, 44, 10 461 CrossRef CAS.
  43. G. Morea, L. Sabbatini, R. H. West and J. C. Vickerman, Surf. Interface Anal., 1992, 18, 421 CAS.
  44. Z. Qi and G. Pickup, Anal. Chem., 1993, 65, 696 CrossRef CAS.
  45. K. G. Neoh, E. T. Kand and K. L. Tan, J. Phys. Chem. B, 1997, 107, 726 CrossRef.
  46. C. Visy, J. Lukkari and J. Kankare, Macromolecules, 1994, 27, 3322 CrossRef CAS.
  47. M. Fall, J.-J. Aaron, N. Sakmeche, M. M. Dieng, M. Jouini, S. Aeiyach, J.-C. Lacroix and P.-C. Lacaze, Synth. Met., 1998, 93, 175 CrossRef CAS.
  48. The detection concerning the material itself (that means the oligothiophenes constituting the polymeric backbone) failed. It may be caused by its lack of solubility, leading to its precipitation in the matrix. On the other hand, some experiments have shown that there is a good affinity between HPβCD and DMF: for instance, solubilization of a BT-βCD complex in DMF leads to its dethreading. As a result, DMF could extract the HPβCD molecules from the material and these latter could be readily detected through MALDI-MS.
  49. J. A. Marinsky, H. Kodama and T. Miyajima, J. Phys. Chem. B, 1998, 102, 6949 CrossRef CAS.
  50. A. E. Kaifer, Acc. Chem. Res., 1999, 32, 62 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.