Ultra-high performance photoluminescent polarizers based on melt-processed polymer blends

(Note: The full text of this document is currently only available in the PDF Version )

Michael Eglin, Andrea Montali, Anja R. A. Palmans, Theo Tervoort, Paul Smith and Christoph Weder


Abstract

Photoluminescent polarizers that comprise uniaxially oriented photoluminescent species which absorb and emit light in highly linearly polarized fashion, can efficiently combine the polarization of light and the generation of bright colors. We here report the preparation and characterization of such polarizers by simple melt-processing and solid-state deformation of blends of a photoluminescent guest and a thermoplastic matrix polymer. The orientation behavior of a poly(2,5-dialkoxy-p-phenyleneethynylene) derivative (EHO-OPPE), 1,4-bis(phenylethynyl)benzene, and 1,4-bis(4-dodecyloxyphenylethynyl)benzene was systematically compared in different polyethylene grades. Experiments suggest that if phase-separation between the photoluminescent guest and the matrix polymer is reduced during the preparation of the pristine (i.e. unstretched) blend films, photoluminescent polarizers can be produced which exhibit unusually high dichroic properties at minimal draw ratios. In connection with this finding, an optimized, melt-processed blend based on 1,4-bis(4-dodecyloxyphenylethynyl)benzene and linear low-density polyethylene was developed that allows efficient manufacturing of photoluminescent polarizers which at draw ratios of only 10 exhibit dichroic ratios exceeding 50.


References

  1. L. K. M. Chan, in The Encyclopedia of Advanced Materials, Vol. 2, ed. D. Bloor, R. J. Brook, M. C. Flemings and S. Mahajan, Elsevier Science Ltd., Oxford, 1994, p. 1294 Search PubMed.
  2. T. J. Nelson and J. R. Wullert II, in Electronic Information Display Technologies, World Scientific Publishing, Singapore, 1997 Search PubMed.
  3. M. Schadt and J. Fünfschilling, Jpn. J. Appl. Phys., 1990, 29, 1974 CAS.
  4. D. J. Broer, J. Lub and G. N. Mol, Nature, 1995, 378, 467 CrossRef CAS.
  5. D. Coates, M. J. Goulding, S. Greenfield, J. M. W. Hanmer, E. Jolliffe, S. A. Marden, O. L. Parri and M. Verrall, SID 96 Applications Digest, 1996, 67 Search PubMed.
  6. R. A. M. Hikmet, Mol. Cryst. Liq. Cryst., 1991, 198, 357 CrossRef CAS.
  7. R. A. M. Hikmet, J. Appl. Phys., 1990, 68, 4406 CrossRef CAS.
  8. Y. Dirix, H. Jagt, R. Hikmet and C. Bastiaansen, J. Appl. Phys., 1998, 83, 2927 CrossRef CAS.
  9. C. Weder, C. Sarwa, C. Bastiaansen and P. Smith, Adv. Mater., 1997, 9, 1035 CrossRef CAS.
  10. A. Montali, C. Bastiaansen, P. Smith and C. Weder, Nature, 1998, 392, 261 CrossRef CAS.
  11. C. Weder, C. Sarwa, A. Montali, C. Bastiaansen and P. Smith, Science, 1998, 279, 835 CrossRef CAS.
  12. A. Montali, P. Smith and C. Weder, J. Mater. Sci., in the press Search PubMed.
  13. A. R. A. Palmans, P. Smith and C. Weder, Macromolecules, in the press Search PubMed.
  14. I. M. Ward, Proc. Phys. Soc., 1962, 80, 1176 Search PubMed.
  15. Y. Dirix, T. A. Tervoort, C. Bastiaansen and P. J. Lemstra, J. Text. Inst., 1995, 86, 314 Search PubMed.
  16. Y. T. Tang, P. J. Phillips and E. W. Thulstrup, Chem. Phys. Lett., 1982, 93, 66 CrossRef.
  17. P. J. Phillips, Chem. Rev., 1990, 90, 425 CrossRef CAS.
  18. Y. Dirix, T. A. Tervoort and C. Bastiaansen, Macromolecules, 1995, 28, 486 CrossRef CAS.
  19. Y. Dirix, T. A. Tervoort and C. Bastiaansen, Macromolecules, 1997, 30, 2175 CrossRef CAS.
  20. O. Kratky, Kolloid Z., 1933, 64, 213 Search PubMed.
  21. R. B. D. Fraser, J. Chem. Phys., 1953, 21, 1511 CAS.
  22. P. H. Hermans and D. Heikens, Recl. Trav. Chim. Pays-Bas, 1952, 71, 49 CAS.
  23. J. Michl and E. W. Thulstrup, in Spectroscopy with Polarized Light, VCH Publishers Inc., New York, 1986 Search PubMed.
  24. E. W. Thulstrup and J. Michl, J. Phys. Chem., 1980, 84, 81.
  25. E. W. Thulstrup and J. Michl, J. Am. Chem. Soc., 1982, 104, 5594 CrossRef CAS.
  26. C. Weder and M. S. Wrighton, Macromolecules, 1996, 29, 5157 CrossRef CAS.
  27. It should be noted that differential scanning calorimetry and dynamic mechanical thermal analysis data of the pure EHO-OPPE indicate an onset of thermal decomposition due to crosslinking at about 130 °C (D. Steiger, P. Smith and C. Weder, Macromol. Rapid. Commun., 1997, 18, 643). However, the blends prepared here were fully soluble after melt-processing and the absorption and PL emission spectra of these solutions were identical to an untreated reference, indicating that no significant degradation of the PPE occurred Search PubMed.
  28. P. J. Flory, Macromolecules, 1978, 11, 1138 CrossRef CAS.
  29. S. Nakatsuji, K. Matsuda, Y. Uesugi, K. Nakashima, S. Akiyama and W. Fabian, J. Chem. Soc., Perkin Trans. 1, 1992, 755 RSC.
  30. A. R. A. Palmans, M. Eglin, A. Montali, P. Smith and C. Weder, Chem. Mater., submitted Search PubMed.
  31. E. W. Thulstrup, J. Michl and J. H. Eggers, J. Phys. Chem., 1970, 74, 3868 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.