Copper nanoparticles in zeolite Y

(Note: The full text of this document is currently only available in the PDF Version )

Andreas Seidel, Joachim Loos and Bruno Boddenberg


Abstract

CuCl has been dispersed in the supercages of a Y-type zeolite by heating a mechanical salt/host mixture in vacuo. The occluded salt was subsequently reduced to copper metal in a hydrogen atmosphere. Virtually complete reduction of the salt is achieved at 460[thin space (1/6-em)]°C. Under the same conditions, extraframework copper(II) ions, exchanged into zeolite NaY, are only partly reduced. The copper forms nanoaggregates of narrow size distribution inside the zeolite pore system; the average particle diameter is 5 nm. Our data suggest that these nanoparticles consist of several interconnected copper assemblies of supercage (diameter 1.2 nm) size. A small fraction of the salt remains at the outer surface of the zeolite crystallites in the inclusion step, and there produces larger copper metal particles upon reduction with H2.


References

  1. Metal Clusters in Catalysis, ed. B. C. Gates, L. Guczi and H. Knözinger, Stud. Surf. Sci. Catal., 1986, 29 Search PubMed.
  2. Metal-Support and Metal-Additive Effects in Catalysis, ed. B. Imelik, C. Naccache, G. Coudurier, H. Praliaud, P. Meriaudeau, P. Gallezot, G. A. Martin and J. C. Vedrine, Stud. Surf. Sci. Catal., 1982, 11 Search PubMed.
  3. Metal Microstructures in Zeolites: Preparation–Properties–Applications, ed. P. A. Jacobs, N. I. Jaeger, P. Jiru and G. Schulz-Ekloff, Stud. Surf. Sci. Catal., 1982, 12 Search PubMed.
  4. D. Delafosse, J. Chim. Phys. Phys.–Chim. Biol., 1986, 83, 791 Search PubMed.
  5. P. A. Jacobs, Stud. Surf. Sci. Catal., 1982, 12, 71 CAS.
  6. P. A. Jacobs, Stud. Surf. Sci. Catal., 1986, 29, 357 CAS.
  7. K. Seff, Stud. Surf. Sci. Catal., 1996, 102, 267 CAS.
  8. A. Seidel, F. Rittner and B. Boddenberg, J. Phys. Chem. B, 1998, 102, 7176 CrossRef CAS.
  9. T. Sprang, A. Seidel, M. Wark, F. Rittner and B. Boddenberg, J. Mater. Chem., 1997, 7, 1429 RSC.
  10. J. A. Rabo, in Zeolite Chemistry and Catalysis, ed. J. A. Rabo, ACS Monograph 171, American Chemical Society, Washington, DC, 1976, p. 332 Search PubMed.
  11. Y. Xie and Y. Tang, Adv. Catal., 1990, 37, 1 CAS.
  12. A. Seidel, U. Tracht and B. Boddenberg, J. Phys. Chem., 1996, 100, 15917 CrossRef.
  13. A. Seidel, B. Schimiczek, U. Tracht and B. Boddenberg, Solid State NMR, 1998, 12, 53 CrossRef CAS.
  14. D. W. Breck, Zeolite Molcular Sieves, Robert E. Krieger, Malabar, 1984 Search PubMed.
  15. G. Engelhardt and D. Michel, High-Resolution Solid-State NMR of Silicates and Zeolites, John Wiley & Sons, Chichester, 1987 Search PubMed.
  16. CRC Handbook of Chemistry and Physics, ed. D. R. Lide, CRC Press, Boca Raton, FL, 78th edn., 1997 Search PubMed.
  17. G. D. Borgard, S. Molvik, P. Balaraman, T. W. Root and J. A. Dumesic, Langmuir, 1995, 11, 2065 CrossRef.
  18. J. Howard and J. M. Nicol, Zeolites, 1988, 8, 142 CAS.
  19. V. Borovkov and H. G. Karge, J. Chem. Soc., Faraday Trans., 1995, 91, 2035 RSC.
  20. M. Hartmann and B. Boddenberg, Microporous Mater., 1994, 2, 127 CrossRef CAS.
  21. X. D. Peng, T. C. Golden, R. M. Pearlstein and R. Pierantozzi, Langmuir, 1995, 11, 534 CrossRef CAS.
  22. W. Backen and R. Vestin, Acta Chem. Scand., Ser A, 1979, 33, 85.
  23. M. Håkansson and S. Jagner, Inorg. Chem., 1990, 29, 5241 CrossRef.
  24. R. G. Herman, J. H. Lunsford, H. Beyer, P. A. Jacobs and J. B. Uytterhoeven, J. Phys. Chem., 1975, 79, 2388 CrossRef CAS.
  25. G. Schulz-Ekloff, in Solid-State Supramolecular Chemistry: Two-and Three-Dimensional Inorganic Networks, ed. G. Alberti and T. Bein, Comprehensive Supramolecular Chemistry, Pergamon, New York, 1996, vol. 7, p. 549 Search PubMed.
  26. G. Bergeret, P. Gallezot and B. Imelik, J. Phys. Chem., 1981, 85, 411 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.