A study of the mechanism of the reaction of trimethylgallium with hydrogen selenide

(Note: The full text of this document is currently only available in the PDF Version )

Nicholas Maung, Guanghan Fan, Tat-Lin Ng, John O. Williams and Andrew C. Wright


Abstract

A study of the pre-deposition room temperature gas-phase reactions involved in the growth of Ga2Se3 (and/or GaSe) using trimethylgallium (GaMe3) and hydrogen selenide (H2Se) was undertaken, using a simple mass spectrometric sampling system on a conventional atmospheric pressure MOCVD reactor. The experimental studies were complemented by theoretical quantum chemical calculations which were used to predict the reaction thermochemistry and kinetics of the proposed reaction scheme. We have shown that the gas phase reaction of the GaMe3–H2Se mixture can be described by a simple reaction mechanism with no need for the participation of a stable Lewis acid–base adduct, although a transient adduct type species may be involved. The effect of the room temperature reaction of GaMe3 with H2Se on the growth mechanism of Ga2Se3/GaSe and its role in determining epilayer morphology and microstructure are also discussed.


References

  1. N. Teraguchi, F. Kato, M. Konagai and K. Takahashi, Jpn. J. Appl. Phys., 1989, 28, L2134 CAS.
  2. J. O. Williams, N. Maung, A. C. Wright, Metal–Organic Chemical Vapour Deposition (MOCVD) for the Preparation of New Materials and Devices, in IUPAC Monographs on Chemistry for the 21st Century: Interfacial Science, Blackwell Science Ltd., Oxford, 1997 Search PubMed.
  3. N. Maung, G. H. Fan, T. L. Ng, J. O. Williams and A. C. Wright, J. Cryst. Growth, 1996, 158, 68 CrossRef CAS.
  4. D. Morley, M. von der Emde, D. R. T. Zahn, V. Offerman, T. L. Ng, N. Maung, A. C. Wright, G. H. Fan, I. B. Poole and J. O. Williams, J. Appl. Phys., 1996, 79, 3196 CrossRef.
  5. M. von der Emde, D. R. T. Zahn, T. L. Ng, N. Maung, G. H. Fan, I. B. Poole, J. O. Williams and A. C. Wright, Appl. Surf. Sci., 1996, 104, 575 CrossRef.
  6. T. L. Ng, N. Maung, G. H. Fan, I. B. Poole, J. O. Williams and A. C. Wright, Adv. Mater., 1996, 2, 185 CAS.
  7. G. H. Fan, N. Maung, T. L. Ng, P. F. Heelis, J. O. Williams, A. C. Wright, D. F. Foster and D. J. Cole-Hamilton, J. Cryst. Growth, 1997, 170, 485 CrossRef CAS.
  8. A. C. Jones and P. O'Brien, The Chemistry of Compound Semiconductor CVD—Preparation and Uses, VCH, Weinheim, 1997 Search PubMed.
  9. G. E. Coates, M. L. H. Green and K. Wade, Organometallic Compounds, Methuen, London, 3rd edn., 1967, vol. 1 Search PubMed.
  10. E. A. Piocos and B. S. Ault, J. Am. Chem. Soc., 1989, 111, 8978 CrossRef CAS.
  11. E. A. Piocos and B. S. Ault, J. Phys. Chem., 1991, 95, 6827 CrossRef CAS.
  12. E. A. Piocos and B. S. Ault, J. Phys. Chem., 1992, 96, 7589 CrossRef CAS.
  13. H. Bai and B. S. Ault, J. Phys. Chem., 1994, 98, 6082 CrossRef CAS.
  14. N. Maung, J. Mol. Struct. (THEOCHEM), 1998, 432, 129 CrossRef CAS.
  15. M. R. Czerniak and B. C. Easton, J. Cryst. Growth, 1984, 68, 128 CrossRef CAS.
  16. J. S. Whiteley and S. K. Ghandhi, J. Electrochem. Soc., 1983, 130, 1191 CAS.
  17. P. D. Agnello and S. K. Gandhi, J. Electrochem. Soc., 1988, 135, 1530 CAS.
  18. G. P. Smith and R. Patrick, Int. J. Chem. Kinet., 1983, 15, 167 CAS.
  19. W. J. Hehre, L. Radom, P. R. v. Schleyer and J. A. Pople, Ab Initio Molecular Orbital Theory, John Wiley & Sons, New York, 1986 Search PubMed.
  20. R. G. Parr and Y. Weitao, Density-Functional Theory of Atoms and Molecules, Oxford University Press, Oxford, 1995 Search PubMed.
  21. J. M. Seminario and P. Politzer, Modern Density Functional Theory: A Tool for Chemistry, Elsevier, Amsterdam, 1995 Search PubMed.
  22. GAUSSIAN 94 (Revision E.1), M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. C. Johnson, M. A. Robb, J. R. Cheeseman, T. A. Keith, G. A. Petersson, J. A. Montgomery, K. Raghavachari, M. A. Al-Laham, V. G. Zakrzewski, J. V. Ortiz, J. B. Foresman, J. Cioslowski, B. B. Strefanov, A. Nanayakkara, M. Challacombe, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. P. Stewart, M. Head-Gordon, C. Gonzalez and J. A. Pople, Gaussian Inc., Pittsburgh, PA, 1995.
  23. SPARTAN version 4.1.2, Wavefunction Inc., 18401 Von Karman Ave., #370, Irvine, CA 92715, U.S.A., © 1995 Wavefunction, Inc.
  24. W. J. Hehre, L. D. Burke, A. J. Shusterman and W. J. Pietro, Experiments in Computational Organic Chemistry, Wavefunction, Inc.Irvine, 1993 Search PubMed.
  25. W. J. Hehre, Practical Strategies for Electronic Structure Calculations, Wavefunction, Inc., Irvine, 1995 Search PubMed.
  26. W. J. Hehre, A. J. Shusterman and W. W. Huang, A Laboratory Book of Computational Organic Chemistry, Wavefunction, Inc., Irvine, 1996 Search PubMed.
  27. The Molecular Modeling Workbook for Organic Chemistry, ed. W. J. Hehre, A. J. Shusterman and J. E. Nelson, Wavefunction, Inc., Irvine, 1998 Search PubMed.
  28. GAUSSIAN 94 (Revision D.1 and higher) User's Reference, Gaussian Inc., Pittsburgh, PA, 1994–1996.
  29. J. B. Foresman and A. E. Frisch, Exploring Chemistry with Electronic Structure Methods, Gaussian Inc., Pittsburgh, PA, 2nd edn., 1995–1996 Search PubMed.
  30. E. Wigner, Z. Phys. Chem., 1932, 19, 203.
  31. J. I. Steinfeld, J. S. Francisco and W. L. Hase, Chemical Kinetics and Dynamics, Prentice-Hall, Englewood Cliffs, NJ, 1989 Search PubMed.
  32. S. Salim, C. A. Wang, R. D. Driver and K. F. Jensen, J. Cryst. Growth, 1996, 169, 443 CrossRef CAS.