Structural, electrical and magnetic properties of low-dimensional conductors based on unsymmetrical π donor EDT-TTF and analogous selenium-substituted molecules

(Note: The full text of this document is currently only available in the PDF Version )

Akane Sato, Emiko Ojima, Hayao Kobayashi and Akiko Kobayashi


Abstract

Organic conductors based on the unsymmetrical π donor molecule EDT-TTF (ethylenedithiotetrathiafulvalene) or its selenium-substituted analogs (EDST, EDTS) and tetrahedral anions GaCl4 were prepared. The crystal structure determinations and the extended Hückel tight-binding band calculations indicate these systems to be quasi-one-dimensional conductors similar to TMTTF or TMTSF systems (TM systems). Electrical resistivity and magnetic susceptibility measurements and low-temperature X-ray diffraction experiments suggested a spin-Peierls ground state for (EDT-TTF)2GaCl4. (EDST)2GaCl4 and (EDTS)2GaCl4 exhibit metallic behavior down to ca. 40 K. The electric and magnetic properties of (EDST)2GaCl4 suggested a semimetallic state at low temperature. In spite of the similarity in the crystal and electronic band structures between TM and EDT systems, these two series of quasi-one-dimensional conductors do not share the same ‘generalized phase diagram’. The electron–lattice interaction seems to be important in EDT conductors. The electric and magnetic properties of the isostructural systems with magnetic FeCl4 anions were also examined. The magnetic interaction between the high-spin Fe3+ ions was found to be very weak.


References

  1. D. Jérome, A. Mazaud, M. Ribault and K. Bechgaard, J. Phys. Lett. (Paris), 1980, 41, L-95 Search PubMed.
  2. D. Jérome and H. Schulz, Adv. Phys., 1982, 31(4), 299 CAS; D. Jérome, Science, 1990, 253, 1509.
  3. J. Moser, M. Gabay, P. A. Senzier, D. Jérome, K. Bechgaard and J. M. Fabre, Eur. Phys. J., 1999, B1, 39 Search PubMed.
  4. D. Jérome, in Organic Conductors, Fundamentals and Applications, ed. J.-P. Farges, Marcel Dekker, Inc., New York, Basel, Hong Kong, 1994 Search PubMed.
  5. (a) R. Kato, H. Kobayashi and A. Kobayashi, Chem. Lett., 1989, 781 CAS; (b) A. Kobayashi, R. Kato and H. Kobayashi, in The Physics and Chemistry of Organic Superconductors, ed. G. Saito and S. Kagoshima, Springer Proc. Phys., 1990, 51, 302 Search PubMed.
  6. A. Kobayashi et al., Proceedings of the Annual Meeting of the Chemical Society of Japan, Kyoto, March, 1995, Abstr., p. 433.
  7. T. Mori and H. Inokuchi, Solid State Commun., 1989, 70(8), 823 CrossRef CAS.
  8. A. Hountas, A. Terzis, G. C. Papavassiliou, B. Holti, M. Burkle, C. W. Meyer and J. Zambounis, Acta Crystallogr, Sect. C, 1990, 46, 228 CrossRef.
  9. R. Kato, H. Kobayashi, A. Kobayashi, T. Naito, M. Tamura, H. Tajima and H. Kuroda, Chem. Lett., 1989, 1839 CAS.
  10. B. Garreau, B. Pomarede, C. Faulmann, J.-M. Fabre, P. Cassoux and J.-P. Legros, C. R. Acad. Sci. Paris, 1991, 313(2), 509 Search PubMed.
  11. A. Kobayashi, A. Sato, K. Kawano, T. Naito, H. Kobayashi and T. Watanabe, J. Mater. Chem., 1995, 5, 1671 RSC.
  12. (a) T. Naito, A. Sato, K. Kawano, A. Tateno, H. Kobayashi and A. Kobayashi, J. Chem. Soc., Chem. Commun., 1995, 351 RSC; (b) A. Kobayashi, T. Naito, A. Sato and H. Kobayashi, Synth. Met., 1997, 86, 1841 CrossRef CAS.
  13. (a) H. Tajima, M. Inokuchi, A. Kobayashi, T. Ohta, R. Kato, H. Kobayashi and H. Kuroda, Chem. Lett., 1993, 1235 CAS; (b) H. Tajima, M. Inokuchi, S. Ikeda, M. Arifuku, T. Naito, M. Tamura, T. Ohta, A. Kobayashi, R. Kato, H. Kobayashi and H. Kuroda, Synth. Met., 1995, 70, 1035 CrossRef CAS; (c) M. Inokuchi, H. Tajima, T. Ohta, H. Kuroda, A. Kobayashi, A. Sato, T. Naito and H. Kobayashi, J. Phys. Soc. Jpn., 1996, 65(2), 538 Search PubMed; (d) H. Tajima, A. Kobayashi, Y. Ootuka, A. Sato, T. Naito and H. Kobayashi, Synth. Met., 1996, 79, 141 CrossRef CAS; (e) H. Tajima, M. Inokuchi, A. Kobayashi, A. Sato, T. Naio, H. Kobayashi and H. Kuroda, Synth. Met., 1997, 85, 1585 CrossRef CAS.
  14. L. Brossard, M. Ribault, B. Garreau, B. Pomarède and P. Cassoux, Europhys. Lett., 1992, 19, 223 Search PubMed.
  15. L. Brossard, M. Ribault, M. L. Doublet, E. Canadell, B. Garreau and J. P. Legros, Synth. Met., 1993, 56, 2833 CAS.
  16. J. M. Williams, J. R. Ferraro, R. J. Thorn, K. D. Carlson, U. Geiser, H. H. Wang, A. M. Kini and M.-H. Whangbo, Organic Superconductors (Including Fullerenes), Prentice Hall, New Jersey, 1992 Search PubMed.
  17. A. Terzis, A. Hountas, A. E. Underhill, A. Clark, B. Kaye, B. Hilti, C. Mayer, J. Pfeiffer, S. Y. Yiannopoulos, G. Mousdis and G. C. Papavassiliou, Synth. Met., 1988, 27, B97 CAS.
  18. G. V. Papavassiliou, G. A. Mousdis, J. S. Zambounis, A. Terzis, A. Hountas, B. Hilti, C. W. Mayer and J. Pfeiffer, Synth. Met., 1988, 27, B379 CrossRef CAS.
  19. R. Kato, H. Kobayashi and A. Kobayashi, Synth. Met., 1991, 41–43, 2093 CrossRef CAS.
  20. K. S. Varma, A. Bury, N. J. Harris and A. E. Underhill, Synthesis, 1987, 837 CrossRef CAS.
  21. C. M. Bolinger and T. B. Rauchfuss, Inorg. Chem., 1982, 21, 3947 CrossRef CAS.
  22. H. Kobayashi, H. Tomita, T. Naito, A. Kobayashi, F. Sakai, T. Watanabe and P. Cassoux, J. Am. Chem. Soc., 1996, 118, 368 CrossRef CAS; H. Kobayashi, A. Sato, E. Arai, H. Akutsu, A. Kobayashi and P. Cassoux, J. Am. Chem. Soc., 1997, 119, 12 392 CrossRef CAS; H. Akutsu, K. Kato, E. Ojima, H. Kobayashi, H. Tanaka, A. Kobayashi and P. Cassoux, Phys. Rev., 1998, B58, 9294 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.