Glycometallate surfactants Part 2: non-aqueous synthesis of mesoporous titanium, zirconium and niobium oxides

(Note: The full text of this document is currently only available in the PDF Version )

Deepa Khushalani, Geoffrey A. Ozin and Alex Kuperman


Abstract

Cetyltrimethylammonium glycotitanate(IV), glycozirconate(IV) and glyconiobate(V), CTA1,2[M(OCH2CH2)3] where M=Ti(IV), Zr(IV), Nb(V), have been synthesized under non-aqueous conditions by reacting Na1,2[M(OCH2CH2)3] with CTACl in ethylene glycol. The glycometallates all have a structure based upon an octahedral metal center containing three chelated glycolate ligands. In ethylene glycol all of the CTA1,2[M(OCH2CH2)3] moieties are found to self-assemble into a lamellar mesophase with a structure based upon bilayers of cationic CTA+ that are charge-balanced by [M(OCH2CH2)3]2– counter-anions. Hydrolysis of the lamellar glycometallate mesophase in ethylene glycol leads to well-ordered hexagonal phases of mesoporous zirconia and niobia but partially ordered for mesoporous titania. In all cases it is found that the extent of condensation-polymerization of the transition metal oxide in the as-synthesized mesoporous materials is insufficient to sustain the integrity of the structure after the surfactant template is removed by a thermal treatment. Structure re-enforcement of the metal oxide framework can however be achieved by silanation post-treatment of the dehydrated mesoporous metal oxide with Si2H6 at 100[thin space (1/6-em)]°C. All of the mesoporous transition metal oxides that emerge from this procedure are found to be extensively polymerized and stable to the removal of surfactant. Moreover, they all contain silica in the structure at levels that are tunable over a much wider range as compared to that previously reported in the literature. The method described in this paper is a novel approach to the synthesis of stable high surface area mesoporous transition metal oxides with an adjustable level of silica incorporation into the structure.


References

  1. C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli and J. S. Beck, Nature, 1992, 359, 710 CrossRef CAS.
  2. J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. T. Schmitt, C. T-W. Chu, D. H. Olson, E. W. Sheppard, S. B. McCullen, J. B. Higgins and J. L. Schlenker, J. Am. Chem. Soc., 1992, 114, 10834 CrossRef CAS.
  3. D. M. Antonelli and J. Y. Ying, Angew. Chem., Int. Ed. Engl., 1995, 34, 2014 CrossRef CAS; D. M. Antonelli, A. Nakahira and J. Y. Ying, Inorg. Chem., 1996, 35, 3126 CrossRef CAS; D. M. Antonelli and J. Y. Ying, Angew. Chem. Int., Ed. Engl., 1996, 35, 426 CrossRef CAS; D. M. Antonelli and J. Y. Ying, Chem. Mater., 1996, 8, 874 CrossRef CAS; P. Trens, M. J. Hudson and R. Denoyel, J. Mater. Chem., 1998, 8, 2147 RSC; G. Pacheco, E. Zhao, A. Garcia, A. Sklyarov and J. J. Fripiat, J. Mater. Chem., 1998, 8, 219 RSC; J. Jimenez-Jimenez, P. Maireless-Torres, P. Olivera-Pastor, E. Rodriguez-Castellon, A. Jimenez-Lopez, D. J. Jones and J. Roziere, Adv. Mater., 1998, 10, 812 CrossRef CAS.
  4. A. Sayari and P. Liu, Microporous Mater., 1997, 12, 149 CrossRef CAS.
  5. P. Cousin and R. A. Ross, Mater. Sci. Eng. A, 1990, 130, 119 Search PubMed.
  6. R. J. Davis and Z. Liu, Chem. Mater., 1997, 9, 2311 CrossRef CAS.
  7. L. Zhufang, J. Tabora and R. J. Davis, J. Catal., 1994, 149, 117 CrossRef CAS.
  8. H. H. Kung and E. I. Ko, Chem. Eng. J., 1996, 64, 203 CrossRef CAS.
  9. D. Khushalani, A. Kuperman and G. A. Ozin, preceding paper in this issue.
  10. G. J. Gainsford, T. Kemmitt, C. Lensink and N. B. Milestone, Inorg. Chem., 1995, 34, 746 CrossRef CAS.
  11. B. Herreros, T. L. Barr, P. J. Barrie and J. Klinowski, J. Phys. Chem., 1994, 98, 4570 CrossRef CAS; B. Herreros, S. W. Carr and J. Klinowski, Science, 1994, 263, 1585 CAS.
  12. Y. Blohowiak, D. R. Treadwell, B. L. Mueller, M. L. Hoppe, S. Jouppi, P. Kansal, K. W. Chew, C. L. S. Scotto, F. Babonneau, J. Kampf and R. M. Laine, Chem. Mater., 1994, 6, 2177 CrossRef CAS.
  13. M. Murata, K. Wakino and S. Ikeda, J. Electron Spectrosc. Relat. Phenom., 1975, 6, 459 CrossRef.
  14. K. S. W. Sing, D. H. Everett, R. A. W. Haul, L. Moscou, R. A. Pierotti, J. Rouquerol and T. Siemieniewska, Pure Appl. Chem., 1985, 57, 603 CrossRef CAS; S. Brunauer, P. H. Emmett and E. Teller, J. Am. Chem. Soc., 1938, 60, 309 CrossRef CAS.
  15. A. J. M. De Man and J. Sauer, J. Phys. Chem., 1995, 100, 5025 CrossRef CAS.
  16. D. Huybrechts, L. de Bruycker and P. Jacobs, Nature, 1990, 345, 240 CrossRef CAS; P. T. Tanev and T. J. Pinnavaia, Chem. Mater., 1996, 8, 2068 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.