Glycometallate surfactants. Part 1: non-aqueous synthesis of mesoporous silica

(Note: The full text of this document is currently only available in the PDF Version )

Deepa Khushalani, Geoffrey A. Ozin and Alex Kuperman


Abstract

A novel two step procedure for the synthesis of hexagonal mesoporous silica has been developed. The first non-aqueous step involves the use of ethylene glycol both as solvent and chelating alkoxide. In this step a cetyltrimethylammonium glycosilicate(IV), CTA2[Si2(OCH2CH2)5], building-block is synthesized under non-aqueous conditions by solubilizing SiO2 with NaOH in ethylene glycol in the presence of CTACl. Alternatively, CTA2[Si2(OCH2CH2)5] can be formed by reacting sodium glycosilicate(IV), Na2[Si2(OCH2CH2)5], with CTACl under non-aqueous conditions in ethylene glycol. The glycosilicate(IV) is a structurally well defined dimeric anion based on trigonal-bipyramidal silicon(IV) containing two bidentate and one bridging monodentate glycolate ligand. In ethylene glycol the glycosilicate(IV) surfactant CTA2[Si2(OCH2CH2)5] self-assembles into a lamellar mesophase containing bilayers of cationic CTA+ that are charge-balanced by [Si2(OCH2CH2)5]2– counter-anions. In the second step of the preparation, controlled hydrolysis of the lamellar glycosilicate(IV) phase with water leads to a well ordered hexagonal mesoporous silica in which the extent of condensation-polymerization of the silica is insufficient to sustain the integrity of the structure when the CTA+ cation is removed from the channels. Structure re-enforcement can however be achieved by various post-treatments of the vacuum dehydrated mesoporous silica that enable the creation of stable silica-based mesoporous materials with a wide range of elemental compositions. In this paper a post-treatment with Si2H6 at 100[thin space (1/6-em)]°C was employed to produce extensively polymerized hexagonal mesoporous silica that is stable to removal of the surfactant. The method described in this paper is a novel approach to the synthesis of stable and structurally well defined mesoporous silica-based materials with a wide range of elemental compositions.


References

  1. C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli and J. S. Beck, Nature, 1992, 359, 710 CrossRef CAS.
  2. J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. T. Schmitt, C. T.-W. Chu, D. H. Olson, E. W. Sheppard, S. B. McCullen, J. B. Higgins and J. L. Schlenker, J. Am. Chem. Soc., 1992, 114, 10834 CrossRef CAS.
  3. A. S. Kertes and H. Gutmann, in Surface and Colloid Science, ed. E. Matijevic, Interscience, New York, 1975 Search PubMed.
  4. E. Ruckenstein and R. Nagarajan, J. Phys. Chem., 1980, 84, 1349 CrossRef CAS.
  5. R. Nagarajan and C.-C. Wang, J. Colloid Interface Sci., 1996, 178, 471 CrossRef CAS and references therein.
  6. M. Sjoberg, U. Henriksson and T. Wärnheim, Langmuir, 1990, 6, 1205 CrossRef.
  7. R. Palepu, H. Gharibi, D. M. Bloor and E. Wynn-Jones, Langmuir, 1993, 9, 110 CrossRef CAS.
  8. T. Wärnheim and A. Jönsson, J. Colloid Interface Sci., 1988, 125, 627 CrossRef.
  9. R. K. Iler, The Chemistry of Silica, Wiley & Sons, New York, 1979 Search PubMed.
  10. R. M. Laine, K. U. Blohowiak, T. R. Robinson, M. L. Hope, P. Nardi, J. Kampf and J. Uhm, Nature, 1991, 353, 642 CrossRef CAS.
  11. K. Y. Blohowiak, D. R. Treadwell, B. L. Mueller, M. L. Hoppe, S. Jouppi, P. Kansal, K. W. Chew, C. L. S. Scotto, F. Babonneau, J. Kampf and R. M. Laine, Chem. Mater., 1994, 6, 2177 CrossRef CAS.
  12. P. Kansal and R. M. Laine, J. Am. Ceram. Soc., 1994, 77, 875 CAS.
  13. P. Kansal and R. M. Laine, J. Am. Ceram. Soc., 1995, 78, 529 CAS.
  14. K. W. Chew, B. Dunn, T. Faltens, M. L. Hoppe, R. M. Laine, L. Nazar and H. K. Wu, Am. Chem. Soc. Polym. Prepr., 1993, 34, 254 Search PubMed.
  15. B. Herreros, S. W. Carr and J. Klinowski, Science, 1994, 263, 1585 CAS.
  16. B. Herreros, T. L. Barr, P. J. Barrie and J. Klinowski, J. Phys. Chem., 1994, 98, 4570 CrossRef CAS.
  17. S. Inagaki, Y. Fukushima and K. Kuroda, J. Chem. Soc., Chem. Commun., 1993, 680 RSC.
  18. N. H. Ray and R. J. Plaisted, J. Chem. Soc., Dalton Trans., 1983, 475 RSC.
  19. J. Nathan and E. Oldfield, J. Am. Chem. Soc., 1985, 107, 6769 CrossRef CAS.
  20. R. K. Harris and C. T. G. Knight, J. Mol. Struct., 1982, 78, 273 CrossRef CAS.
  21. E. Lippmaa, M. Mägi, A. Samoson, G. Engelhardt and A.-R. Grimmer, J. Am. Chem. Soc., 1980, 102, 4889 CrossRef CAS.
  22. D. Graf, S. Bauer-Mayer and A. Schnegg, J. Appl. Phys., 1993, 74, 1679 CrossRef.
  23. L. Ling, S. Kuwabara, T. Abe and F. Shimura, J. Appl. Phys., 1993, 73, 3018 CrossRef CAS.
  24. E. Chomski, Ö. Dag, A. Kuperman, N. Coombs and G. A. Ozin, Chem. Vap. Deposit., 1996, 2, 8 CAS.
  25. Ö. Dag, A. Kuperman, P. M. Macdonald and G. A. Ozin, Stud. Surf. Sci. Catal., 1994, 84, 1107.
  26. W. K. Chang, N. Y. Liao and K. K. Gleason, J. Phys. Chem., 1996, 100, 19653 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.