Low temperature synthesis, structure and magnetic properties of La0.85(Na1–xKx)0.15MnO3 perovskites: the role of A cation size disparity in the electronic properties of mixed-valence manganates

(Note: The full text of this document is currently only available in the PDF Version )

Z. El-Fadli, E. Coret, F. Sapiña, E. Martinez, A. Beltrán, D. Beltrán and F. Lloret


Abstract

Single-phase perovskites in the solid solution series La0.85(Na1–xKx)0.15MnO3 (0≤x≤1) have been obtained using a soft treatment, which makes possible strict stoichiometric control. X-Ray powder diffraction patterns of these compounds have been completely indexed with a rhombohedral perovskite cell. The crystal structures have been refined in space group R-3c, in the hexagonal setting, from room-temperature data. Substitution of Na+ by larger K+ ions produces a cell expansion and a decrease in the structural distortion from the ideal cubic structure. The critical temperature for the paramagnetic-ferromagnetic transition, Tc, is found to be practically constant, ca. 333 K, along the entire series. This behaviour is unexpected, taking into account previous correlations established for the alkaline-earth La0.7(Ca1–xSrx)0.3MnO3 series (Tc increases with the mean size of cations at the A positions, 〈rA〉) which expands over a similar 〈rA〉 range. We can therefore discuss these results in terms of two counterweighting contributions: increasing Tc values could be expected as a consequence of the increase with x of the 〈rA〉 value, but the concomitant disorder introduced at the A positions [as represented by the variance of the A cations radial distribution, σ2(〈rA〉)] would cause a decrease in Tc. An approach to the understanding of the contribution that the electronic energy makes to this last effect is advanced.


References

  1. (a) R. M. Kusters, J. Singleton, D. A. Keen, R. McGreevy and W. Hayes, Physica B, 1989, 155, 362 CrossRef CAS; (b) R. von Helmot, J. Wecker, B. Holzapfel, L. Schultz and K. Samwer, Phys. Rev. Lett., 1993, 71, 2331 CrossRef CAS; (c) S. Jin, T. H. Tiefel, M. McCormack, R. A. Fastnacht, R. L. Ramesh and H. Chen, Science, 1994, 64, 413.
  2. (a) Z. Zener, Phys. Rev., 1951, 82, 403 CrossRef CAS; (b) P. W. Anderson, Phys. Rev., 1955, 100, 675 CrossRef CAS; (c) P. G. De Gennes, Phys. Rev., 1960, 116, 141 CrossRef.
  3. (a) P. Schiffer, A. P. Ramirez, W. Bao and S. W. Cheong, Phys. Rev. Lett., 1995, 75, 3336 CrossRef CAS; (b) A. Urushibara, Y. Moritomo, T. Arima, A. Asamitsu, G. Kido and Y. Tokura, Phys. Rev. B, 1995, 51, 14103 CrossRef CAS.
  4. (a) A. Maignan, V. Caignert, Ch. Simon, M. Hervieu and B. Raveau, J. Mater. Chem., 1995, 5, 1091 Search PubMed; (b) H. Y. Hwang, S. W. Cheong, P. G. Radaelli, M. Marezio and B. Batlogg, Phys. Rev. Lett., 1995, 75, 914 CrossRef CAS; (c) R. Mahesh, R. Mahendiran, A. K. Raychaudhuri and C. N. R. Rao, J. Solid State Chem., 1995, 120, 204 CrossRef CAS; (d) J. Fontcuberta, B. Martinez, S. Piñol, J. L. García-Muñoz and X. Obradors, Phys. Rev. Lett., 1996, 76, 1122 CrossRef CAS.
  5. (a) L. M. Rodriguez-Martinez and J. P. Attfield, Phys. Rev. B, 1996, 54, R15622 CrossRef CAS; (b) L. M. Rodriguez-Martinez and J. P. Attfield, Phys. Rev. B, 1998, 58, 2426 Search PubMed; (c) J. P. Attfield, Chem. Mater., 1998, 10, 3239 CrossRef CAS.
  6. (a) F. Damay, C. Martin, A. Maignan and B. Raveau, J. Appl. Phys., 1997, 82, 6181 CrossRef CAS; (b) B. Raveau, A. Maignan, C. Martin and M. Hervieu, Chem. Mater., 1998, 10, 2641 CrossRef CAS.
  7. J. P. Attfield, A. L. Kharlanov and J. A. McAllister, Nature, 1998, 394, 157 CrossRef CAS.
  8. J. Fontcuberta, B. Martinez, S. Piñol, J. L. García-Muñz and X. Obradors, Phys. Rev. B, 1997, 55, R668 CrossRef.
  9. J. Xu, W. H. Tang and J. K. Liang, J. Phys.: Condens. Matter, 1998, 10, 1387 CrossRef CAS.
  10. (a) Y. Ng-Lee, F. Sapiña, E. Martinez-Tamayo, J. V. Folgado, R. Ibañez, D. Beltrán, F. Lloret and A. Segura, J. Mater. Chem., 1997, 7, 1905 RSC; (b) T. Boix, F. Sapiña, Z. El-Fadli, E. Martinez, A. Beltrán, J. Vergara, R. J. Ortega and K. V. Rao, Chem. Mater., 1998, 19, 1569 CrossRef CAS; (c) J. Vergara, R. J. Ortega-Hertogs, V. Madurga, F. Sapiña, Z. El-Fadli, E. Martinez, A. Beltrán and K. V. Rao, Phys. Rev. B, in press Search PubMed.
  11. Samples in the series La0.7(Ca1–χSrχ)0.3MnO3(with χ= 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0) and La0.7Ba0.3MnO3, which are used for comparison, were obtained by using the same preparative procedure.
  12. J. Rodriguez-Carvajal, FULLPROF Program, personal communication.
  13. V. Primo, DRXWin and CreaFit version 2.0, graphical and analytical tools for powder XRD patterns, Powder Diffr., 1999, 14, 70 Search PubMed.
  14. Transition temperatures for La0.7Ba0.3 MnO3 and samples in the series La0.7(Ca1–χSrχ)0.3MnO3 were also obtained by thermogravimetric experiments, except for the χ= 0.0 and 0.2 samples (which have transition temperatures lower than 300 K). In these last cases, the transition temperatures were determined by ac susceptibility measurements performed using a Lake Shore Cryotonics Inc. Model 7000 ac susceptometer (temperature range 100–325 K, frequency and exciting field, 333 Hz and 1 Oe, respectively). All the experimental results concerning these compounds are in good agreement with those previously reported in the literature for analogous compositions (ref. 4).
  15. J. A. M. Van Roosmalen, E. H. P. Cordfunke, R. B. Helmholdt and H. W. Zandbergen, J. Solid State Chem., 1994, 110, 100 CrossRef CAS.
  16. A. H. Morris, The Physical Principles of Magnetism, Robert E. Kreiger Publishing Company, New York, 1980 Search PubMed.
  17. R. D. Shannon, Acta Crystallogr., Sect. A, 1976, 32, 751 CrossRef.
  18. R. G. Pearson, Inorg. Chem., 1988, 27, 734 CrossRef CAS.
  19. F. Millange, V. Caignert, B. Domengès and B. Raveau, Chem. Mater., 1998, 10, 1974 CrossRef CAS.
  20. W. Archibald, J. S. Zhou and J. B. Goodenough, Phys. Rev. B, 1996, 53, 14445 CrossRef CAS.
  21. (a) P. G. Radaelli, G. Iannone, M. Marezio, H. Y. Hwang, S. W. Cheong, J. D. Jorgensen and D. N. Argyriou, Phys. Rev. B, 1997, 56, 8265 CrossRef CAS; (b) V. Caignert, E. Suard, A. Maignan, Ch. Simon and B. Raveau, C. R. Acad. Sci., Ser. IIb, 1995, 321, 515 Search PubMed.
  22. J. M. De Teresa, M. R. Ibarra, J. García, J. Blasco, C. Ritter, P. A. Algarabel, C. Marquina and A. del Moral, Phys. Rev. Lett., 1996, 76, 3392 CrossRef CAS.
  23. In fact, structural disorder in mixed valence manganates can be produced by the presence of at least two different cations at the A sites or, alternatively, be due to the presence of cationic vacancies at the B sites. The present discussion, as well as Attfield's analysis, is centered on the former source of structural disorder, which is consistent with the absence of cationic vacancies (δ≈0) in the series we are dealing with. The effect of disorder produced by cationic vacancies is discussed elsewhere (ref. 10).
  24. (a) L. Sheng, D. Y. Xing, D. N. Sheng and C. S. Ting, Phys. Rev. Lett., 1997, 79, 1710 CrossRef CAS; (b) L. Sheng, D. Y. Xing, D. N. Sheng and C. S. Ting, Phys. Rev. B, 1997, 56, 7053 CrossRef.
  25. In fact, by assuming this approach, the electronic energy variations associated with the decrease in the Mn–O bond length due to the FM–PM transition are being neglected, and the change in the electronic energy associated with the transition is approximated by considering that only the energy of the more external (conduction band) states is modified. Such a simplification finds experimental support in previous results such as those of Radaelli et al. in ref. 21(a).
  26. Q. Li, J. Zhang, A. R. Bishop and C. M. Soukoulis, Phys. Rev. B, 1997, 56, 4541 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.