Layered aluminophosphates II. Crystal structure and thermal behaviour of the layered aluminophosphate UiO-15 and its high temperature variants

(Note: The full text of this document is currently only available in the PDF Version )

Kjell Ove Kongshaug, Helmer Fjellvåg and Karl Petter Lillerud


Abstract

The synthesis and crystal structure of a novel layered aluminophosphate and its two high temperature variants are described. All three structures were solved from powder X-ray diffraction data. The as-synthesized material (UiO-15-as), with composition [NH3(CH2)2NH3]2+[Al2(OH)2(PO4)2(H2O)]2–·H2O, crystallizes in the space group P1 with a=10.37490(13), b=6.60775(8), c=9.90937(11) Å, α=90.762(1), β=115.265(1) and γ=90.162(1)°. In the aluminophosphate layers the five- and six-coordinated aluminium polyhedra form infinite chains along [010] that are crosslinked by phosphate groups. These layers are held together by a complex hydrogen bonding scheme involving the terminal oxygen atoms of the phosphate groups and the nitrogens of the ethylenediammonium ions. A high temperature variant exists around 125[thin space (1/6-em)]°C (UiO-15-125). This compound, with composition [NH3(CH2)2NH3]2+[Al2(OH)2(PO4)2]2–, crystallizes in the monoclinic space group P21/c with a=10.28899(23), b=6.75080(13), c=9.62527(20) Å and β=116.124(1)°. The transformation to UiO-15-125 involves removal of an interlamellar water molecule and another water molecule which is coordinated to aluminium. The infinite chains of aluminium polyhedra along [010] and the hydrogen bonding scheme of UiO-15-as is maintained in UiO-15-125. Another high temperature variant exists around 225[thin space (1/6-em)]°C (UiO-15-225). This compound, with composition [NH3(CH2)2NH3]2+[Al2O(PO4)2]2–, crystallizes in the monoclinic space group P21/c with a=9.42781(37), b=6.91370(19), c=9.40823(27) Å and β=113.002(1)°. The transformation to UiO-15-225 involves the release of a water molecule from UiO-15-125 and the formation of tetrahedral Al-O-Al bonding. UiO-15-225 is therefore the first compound among the aluminophosphates violating Loewensteins rule.


References

  1. K. O. Kongshaug, H. Fjellvåg and K. P. Lillerud, Microporous Mesoporous Mater., in press Search PubMed.
  2. L. Vidal, V. Gramlich, J. Patarin and Z. Gabelica, Eur. J. Solid State Inorg. Chem., 1998, 35, 545 CrossRef CAS.
  3. R. H. Jones, J. M. Thomas, R. Xu, A. K. Cheetham and A. V. Powell, J. Chem. Soc., Chem. Commun., 1991, 1266 RSC.
  4. J. M. Thomas, R. H. Jones, R. Xu, J. Chen, A. M. Chippindale, S. Natarajan and A. K. Cheetham, J. Chem. Soc., Chem. Commun., 1992, 929 RSC.
  5. A. M. Chippindale, S. Natarajan, J. M. Thomas and R. H. Jones, J. Solid State Chem., 1994, 111, 18 CrossRef CAS.
  6. K. Morgan, G. Gainsford and N. Milestone, J. Chem. Soc., Chem. Commun., 1995, 425 RSC.
  7. P. A. Barrett and R. H. Jones, J. Chem. Soc., Chem. Commun., 1995, 1979 RSC.
  8. D. A. Bruce, A. P. Wilkinson, M. G. White and J. A. Bertrand, J. Chem. Soc., Chem. Commun., 1995, 2059 RSC.
  9. S. Oliver, A. Kuperman, A. Lough and G. A. Ozin, Inorg. Chem., 1996, 35, 6373 CrossRef CAS.
  10. D. A. Bruce, A. P. Wilkinson, M. G. White and J. A. Bertrand, J. Solid State Chem., 1996, 125, 228 CrossRef CAS.
  11. I. D. Williams, Q. Gao, J. Chen, L.-Y. Ngai, Z. Lin and R. Xu, Chem. Commun., 1996, 1781 RSC.
  12. A. M. Chippindale, A. R. Cowley, Q. Huo, R. H. Jones, A. D. Law, J. M. Thomas and R. Xu, J. Chem. Soc., Dalton Trans., 1997, 2639 RSC.
  13. Q. M. Gao, B. Z. Li, J. S. Chen, S. G. Li, R. Xu, I. D. Williams, J. Q. Zheng and D. Barber, J. Solid State Chem., 1997, 129, 39 CrossRef.
  14. J. Yu and I. D. Williams, J. Solid State Chem., 1998, 136, 141 CrossRef CAS.
  15. N. Togashi, J. Yu, S. Zheng, K. Sugiyama, K. Hiraga, O. Terasaki, W. Yan, S. Qiu and R. Xu, J. Mater. Chem., 1998, 8, 2827 RSC.
  16. A. M. Chippindale, A. V. Powell, L. M. Bull, R. H. Jones, A. K. Cheetham, J. M. Thomas and R. Xu, J. Solid State Chem., 1992, 96, 199 CAS.
  17. S. Oliver, A. Kuperman, A. Lough and G. A. Ozin, Chem. Commun., 1996, 1761 RSC.
  18. S. Oliver, A. Kuperman, A. Lough and G. A. Ozin, Chem. Mater., 1996, 8, 2391 CrossRef CAS.
  19. J. Yu, K. Sugiyama, K. Hiraga, N. Togashi, O. Terasaki, Y. Tanaka, S. Nakata, S. Qiu and R. Xu, Chem. Mater., 1998, 10, 3636 CrossRef CAS.
  20. K. Morgan, G. Gainsford and N. Milestone, Chem. Commun., 1997, 61 RSC.
  21. M. A. Leech, A. R. Cowley, K. Prout and A. M. Chippindale, Chem. Mater., 1998, 10, 451 CrossRef CAS.
  22. Z. Bircsak and W. T. A. Harrison, Chem. Mater., 1998, 10, 3016 CrossRef CAS.
  23. J. W. Richardson, Jr., J. V. Smith and J. J. Pluth, J. Phys. Chem., 1990, 94, 3365 CrossRef.
  24. E. B. Keller, W. M. Meier and R. M. Kirchner, Solid State Ionics, 1990, 43, 93 CrossRef CAS.
  25. M. J. Annen, D. Young, M. E. Davis, O. B. Cavin and C. R. Hubbard, J. Phys. Chem., 1991, 95, 1380 CrossRef CAS.
  26. S. Oliver, A. Kuperman and G. A. Ozin, Angew. Chem. Int. Ed., 1998, 37, 46 CrossRef CAS.
  27. P. E. Werner, L. Eriksson and J. Westdahl, J. Appl. Crystallogr., 1985, 18, 367 CrossRef CAS.
  28. J. Rodriguez-Caravajal, in Collected Abstracts of Powder DiVraction Meeting, Toulouse, France, 1990, p. 127 Search PubMed.
  29. A. Le Bail, H. Duroy and J. Fourquet, Mater. Res. Bull., 1988, 23, 447 CrossRef CAS.
  30. G. Cascarano, L. Favia and C. Giacovazzo, J. Appl. Crystallogr., 1992, 25, 267 CrossRef.
  31. Molecular Simulations Inc., San Diego, CA, 1997.
  32. A. Larson and R. B. von Dreele, GSAS, LANSCE, Copyright 1985–1988 by the Regents of the University of California.
  33. Biosym Technologies, San Diego, CA, 1995.
  34. C. Baerlocher, A. Hepp and W. M. Meier, DLS-76 a Program for the Simulation of Crystal Structures by Geometric Refinement, ETH, Zürich, 1977.
  35. A. Boultif and D. Louer, J. Appl. Crystallogr., 1991, 24, 987 CrossRef CAS.
  36. A. Altomare, M. C. Burla, M. Camalli, B. Carrozzini, G. Cascarano, C. Giacovazzo, A. Guagliardi, A. G. G. Moliterni, G. Polidori and R. Rizzi, Mater. Sci. Forum, 1998, 278, 284 Search PubMed.
  37. A. Altomare, M. C. Burla, G. Cascarano, C. Giacovazzo, A. Guagliardi, A. G. G. Moliterni and G. Polidori, J. Appl. Crystallogr., 1995, 28, 842 CrossRef CAS.
  38. I. D. Brown and D. Altermatt, Acta Crystallogr., Sect. B, 1985, 41, 244 CrossRef.
  39. J. B. Parise, Acta Crystallogr., Sect. C, 1984, 40, 1641 CrossRef.
  40. D. Riou, T. Loiseau and G. Férey, J. Solid State Chem., 1993, 102, 4 CrossRef CAS.
  41. L. J. Sawers, V. J. Carter, A. R. Armstrong, P. G. Bruce, P. A. Wright and B. E. Gore, J. Chem. Soc., Dalton Trans., 1996, 3159 RSC.
  42. H. Worzala, T. Goetze, D. Fratzky and M. Meisel, Acta Crystallogr., Sect. C, 1998, 54, 283 CrossRef.
  43. C. Panz, K. Polborn and P. Behrens, Inorg. Chim. Acta, 1998, 269, 73 CrossRef CAS.
  44. L. M. Meyer and R. C. Haushalter, Chem. Mater., 1994, 6, 349 CrossRef CAS.
  45. W. Loewenstein, Am. Mineral., 1954, 39, 62.
  46. J. M. Bennett, J. P. Cohen, G. Artioli, J. J. Pluth and J. V. Smith, Inorg. Chem., 1985, 24, 188 CrossRef CAS.
  47. J. J. Pluth and J. V. Smith, Acta Crystallogr., Sect. C, 1987, 43, 866 CrossRef.
  48. W. Depmeier, Acta Crystallogr., Sect. C, 1984, 40, 226 CrossRef.
  49. A. K. Gupta and A. D. Chatterjee, Am. Mineral., 1978, 63, 58 CAS.
  50. K. Sahl, Z. Kristallogr., 1980, 152, 13 CAS.
Click here to see how this site uses Cookies. View our privacy policy here.