XRD, TEM and 29Si MAS NMR study of sol-gel ZnO-SiO2 nanocomposites

(Note: The full text of this document is currently only available in the PDF Version )

Carla Cannas, Mariano Casu, Adolfo Lai, Anna Musinu and Giorgio Piccaluga


Abstract

X-Ray amorphous ZnO nanoparticles homogeneously dispersed in a silica matrix were evidenced in ZnO-SiO2 nanocomposites obtained by a sol-gel method and heated to 700[thin space (1/6-em)]°C. TEM observations indicated that the particle size slowly increases with temperature and zinc oxide content, reaching an upper limit of 12 nm. Through a comparison of the 29Si MAS NMR data of the nanocomposites and silica samples, obtained by the same preparation method, it was possible to observe that reaction occurs between ZnO and silica on heating, which causes a depolymerization of the host matrix with the formation of low condensation groups. This result is discussed in terms of interactions between nanoparticles and the silica matrix at the nanoparticle/matrix interface. A further increase in temperature (900[thin space (1/6-em)]°C) results in the formation of the β-Zn2SiO4 crystalline phase.


References

  1. S. Komarneni, J. Mater. Chem., 1992, 2, 1219 RSC.
  2. O. Clause, M. Kermarec, L. Bonneviot, F. Villain and M. Che, J Am. Chem. Soc., 1992, 114, 4709 CrossRef CAS.
  3. M. Kermarec, J. Y. Carriat, P. Burattin, M. Che and A. Decarreau, J. Phys. Chem., 1994, 98, 12008 CrossRef.
  4. C. R. F. Lund and J. A. Dumesic, J. Phys. Chem., 1981, 85, 3075.
  5. C. Chanéac, E. Tronc and J. P. Jolivet, J. Mater. Chem., 1996, 6, 1905 RSC.
  6. G. Concas, G. Ennas, D. Gatteschi, A. Musinu, G. Piccaluga, C. Sangregorio, G. Spano, J. L. Stanger and D. Zedda, Chem. Mater., 1998, 10, 495 CrossRef CAS.
  7. C. Cannas, D. Gatteschi, A. Musinu, G. Piccaluga and C. Sangregorio, J. Phys. Chem. B, 1998, 102, 7721 CrossRef CAS.
  8. S. Bruni, F. Cariati, M. Casu, A. Lai, A. Musinu, G. Piccaluga and S. Solinas, Nanostruct. Mater., in press Search PubMed.
  9. T. K. Gupta, J. Am. Ceram. Soc., 1990, 73, 1817 CrossRef CAS.
  10. Kang XueYa, Wang TianDiao, Han Yin, Tao MinDe and Tu MingJing, Mater. Res. Bull., 1997, 32, 1165 CrossRef and references therein.
  11. E. A. Meulenkamp, J. Phys. Chem. B, 1998, 102, 5566 CrossRef CAS.
  12. S. Lu, L. Zhang and X. Yao, Chin. Sci. Bull., 1996, 41, 1923 Search PubMed.
  13. L. Khouchaf, M. H. Tullier, M. Wark, J. J. Paillaud and M. Soulard, J. Phys. IV, 1997, 7, C2 Search PubMed.
  14. Powder Diffraction File, Card No. 19–1479 (International Center for Diffraction Data, Swarthmore, PASearch PubMed.
  15. Powder Diffraction File, Card No. 36–1451 (International Center for Diffraction Data, Swarthmore, PASearch PubMed.
  16. E. Lippmaa, M. Magi, A. Samoson, G. Engelhardt and A. R. Grimmer, J. Am. Chem. Soc., 1980, 102, 4889 CrossRef CAS.
  17. F. Cesare Marincola, M. Casu, A. Lai, A. Musinu and G. Piccaluga, J. Non-Cryst. Solids, 1998, 232, 329 CrossRef.
  18. G. Engelard and D. Michel, High Resolution Solid State NMR of Silicates and Zeolites, J. Wiley & Sons, New York, 1987, ch. 5, p. 159 Search PubMed.
  19. K. L. Walter, A. Wokaum, B. E. Handy and A. Baiker, J. Non-Cryst. Solids, 1991, 134, 47 CAS.
  20. H. F. Taylor, J. Am. Chem. Soc., 1962, 47, 932 CAS.
  21. G. E. Maciel, J. Am. Chem. Soc., 1980, 102, 7607 CrossRef.
  22. D. W. Syndorf and G. E. Maciel, J. Phys. Chem., 1982, 86, 5208 CrossRef CAS.
  23. M. Magi, E. Lippmaa, A. Samoson, G. Engelhardt and A. R. Grimmer, J. Phys. Chem., 1984, 88, 1518 CrossRef CAS.
  24. S. Roy and D. Chakravorty, J. Mater. Res., 1994, 9, 2314 CAS.
  25. G. Pantano, R. K. Brow and L. A. Carman, in Sol–Gel Technology, ed. L. C. Klein, Noyes Publications, NJ, 1990, vol. 6, p. 110 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.