Synthesis and characterization of thiazole-containing chromophores for second-order nonlinear optics

(Note: The full text of this document is currently only available in the PDF Version )

Yuh-Kai Wang, Ching-Fong Shu, Eric M. Breitung and Robert J. McMahon


Abstract

Push-pull thiazole-containing nonlinear optical chromophores with dicyanovinyl and tricyanovinyl acceptors, along with their thiophene analogs, have been synthesized and characterized. The onset temperatures of thermal decomposition of these chromophores determined by DSC are above 240[thin space (1/6-em)]°C. The redox properties of the chromophores were studied by cyclic voltammetry and the results reveal the electron-deficient (thiazole) and electron-excessive (thiophene) nature of the heterocycles. Experimental measurements of second-order nonlinear optical response (µ·β) indicate that the combination of either a thiazole or thiophene conjugating unit and a tricyanovinyl acceptor results in a nonlinear optical chromophore exhibiting substantial molecular hyperpolarizability (µ·βca. 7000×10–48 cm6 at 1907 nm).


References

  1. (a) P. N. Prasad and D. J. Williams, Introduction to Nonlinear Optical Effects in Molecules and Polymers, John Wiley & Sons, New York, 1991 Search PubMed; (b) Molecular Nonlinear Optics: Materials, Physics and Devices, ed. J. Zyss, Academic Press, Boston, 1993 Search PubMed; (c) D. R. Kanis, M. A. Ratner and T. J. Marks, Chem. Rev., 1994, 94, 195 CrossRef CAS; (d) Polymers for Second Order Nonlinear Optics, eds. G. A. Lindsay and K. D. Singer, ACS Symposium Series Vol. 601, American Chemical Society, Washington, DC, 1995 Search PubMed.
  2. (a) L. T. Cheng, W. Tam, S. R. Marder, A. E. Steigman, G. Rikken and C. W. Spangler, J. Phys. Chem., 1991, 95, 10643 CrossRef CAS; (b) L. R. Dalton, A. W. Harper, R. Ghosn, W. H. Steier, M. Ziari, H. Fetterman, Y. Shi, R. V. Mustacich, A. K.-Y. Jen and K. J. Shea, Chem. Mater., 1995, 7, 1060 CrossRef CAS; (c) M. S. Wong, Ch. Bosshard, F. Pan and P. Günter, Adv. Mater., 1996, 8, 677 CrossRef CAS; (d) M. Blanchard-Desce, V. Alain, P. V. Bedworth, S. R. Marder, A. Fort, C. Runser, M. Barzoukas, S. Lebus and R. Wortmann, Chem. Eur. J., 1997, 3, 1091 CrossRef CAS.
  3. (a) V. P. Rao, A. K.-Y. Jen, K. Y. Wong and K. J. Drost, Tetrahedron Lett., 1993, 34, 1747 CrossRef CAS; (b) A. K.-Y. Jen, V. P. Rao, K. Y. Wong and K. J. Drost, J. Chem. Soc., Chem. Commun., 1993, 90 RSC; (c) V. P. Rao, A. K.-Y. Jen, K. Y. Wong and K. J. Drost, J. Chem. Soc., Chem. Commun., 1993, 1118 RSC; (d) S.-S. P. Chou, D.-J. Sun, H.-C. Lin and P.-K. Yang, Tetrahedron Lett., 1996, 37, 7279 CrossRef CAS; (e) C.-F. Shu, W.-J. Tsai, J.-Y. Chen, A. K.-Y. Jen, Y. Zhang and T.-A. Chen, J. Chem. Soc., Chem. Commun., 1996, 2279 RSC.
  4. (a) C. W. Dirk, H. E. Katz, M. L. Schilling and L. A. King, Chem. Mater., 1990, 2, 700 CrossRef CAS; (b) R. D. Miller, V. Y. Lee and C. R. Moylan, Chem. Mater., 1994, 6, 1023 CrossRef CAS.
  5. (a) P. R. Varanasi, A. K.-Y. Jen, J. Chandrasekhar, I. N. N. Namboothiri and A. Rathna, J. Am. Chem. Soc., 1996, 118, 12443 CrossRef; (b) I. D. L. Albert, T. J. Marks and M. A. Ratner, J. Am. Chem. Soc., 1997, 119, 6575 CrossRef CAS.
  6. C.-F. Shu and Y.-K. Wang, J. Mater. Chem., 1998, 8, 833 RSC.
  7. T. L. Gilchrist, Heterocyclic Chemistry, John Wiley & Sons Inc., New York, 1985 Search PubMed.
  8. A. Dondoni, G. Fantin, M. Fogagnolo, A. Medici and P. Pedrini, Tetrahedron, 1988, 44, 2021 CrossRef CAS.
  9. (a) C. M. Whitaker, E. V. Patterson, K. L. Kott and R. J. McMahon, J. Am. Chem. Soc., 1996, 118, 9966 CrossRef CAS; (b) K. L. Kott, C. M. Whitaker and R. J. McMahon, Chem. Mater., 1995, 7, 426 CrossRef CAS.
  10. MOPAC version 6.0, Quantum Chemistry Program Exchange, (QCPE #455), Department of Chemistry, Indiana University, Bloomington, Indiana.
  11. A. Dondoni, G. Fantin, M. Fogagnolo, A. Medici and P. Pedrini, Synthesis, 1987, 998 CrossRef CAS.
  12. A. I. de Lucas, N. Martín, P. de Miguel, C. Seoane, A. Albert and F. H. Cano, J. Mater. Chem., 1995, 5, 1145 Search PubMed.
  13. (a) C. R. Moylan, R. L. Twieg, V. Y. Lee, S. A. Swanson, K. M. Betterton and R. D. Miller, J. Am. Chem. Soc., 1993, 115, 12599 CrossRef CAS; (b) P. V. Bedworth, Y. Cai, A. Jen and S. R. Marder, J. Org. Chem., 1995, 61, 2242 CrossRef CAS; (c) C.-F. Shu, Y.-C. Shu, Z.-H. Gong, S.-M. Peng, G. H. Lee and A. K.-Y. Jen, Chem. Mater., 1998, 10, 3284 CrossRef CAS.
  14. A. K.-Y. Jen, Y. Cai, P. V. Bedworth and S. R. Marder, Adv. Mater., 1997, 9, 132 CrossRef CAS.
  15. The experimental hyperpolarizabilities for compounds 6 and 7 correlate well to previously published values measured in 1,4-dioxane (µ·β1907 nm, dioxane= 1300 × 10–48 esu and µ·β1907 nm, dioxane= 6200 × 10–48 esu, respectively).3a,b.
  16. Structures 4, 6, and 7(Table 1) are computed to be the lowest energy conformer for each species. Although structure 5 lies 0.4 kcal mol–1 above the lowest energy conformer, this conformer was used for the purpose of remaining consistent with the other compounds. It should be noted that the computed dipole moment of 5 differs from that of the lowest energy conformer by only 0.2 D.
Click here to see how this site uses Cookies. View our privacy policy here.