CT complexes based on TEMPO radicals

(Note: The full text of this document is currently only available in the PDF Version )

Shin'ichi Nakatsuji, Atsushi Takai, Kazuyoshi Nishikawa, Yukio Morimoto, Noritake Yasuoka, Kazuya Suzuki, Toshiaki Enoki and Hiroyuki Anzai


Abstract

A series of CT (charge-transfer) complexes have been prepared, in which TEMPO (2,2,6,6-tetramethylpiperidinyloxyl) radical 1 and its derivatives (2 and 6-10) act as donors using TCNQF4 (2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane) or DDQ (2,3-dichloro-5,6-dicyanobenzo-1,4-quinone) as acceptors. A sharp difference was observed in magnetic properties between the charge-transfer complexes derived from the TEMPO radicals 1 or 2 and amino-TEMPO radicals 6-10 and the distinct difference observed in the molecular/crystal structures in the complexes is thought to reflect the difference in their magnetic behaviour. The CT complexes from 4-dimethylamino- or 4-azetidino-TEMPO and DDQ formed salt-like complexes of protonated 4-dialkylamino-TEMPO and the substituted benzo-1,4-quinonehydroxylate upon recrystallization from moist acetone.TEMPO radicals are a well-known class of stable radicals mainly used as spin probes for biological studies and a number of derivatives have been prepared for the purpose until now.1 On the other hand, it is of current interest to develop new molecular-based magnetic materials especially organomagnetic materials and numerous compounds carrying TEMPO radicals as the key building blocks have been prepared and their magnetic behaviour has been elucidated in recent years.2 During the course of our studies to develop new organomagnetic materials, we have been interested in preparing some donor or acceptor molecules carrying stable radicals and the CT complexes derived therefrom to build up and to arrange the spins in the solid state/crystal structures4 and we found recently that some TEMPO radicals (A)5 or verdazyl radicals (B)6


References

  1. Cf. E. G. Rozantsev and V. D. Sholle, Synthesis, 1971, 190, and 401 Search PubMed; J. F. W. Keana, Chem. Rev., 1978, 78, 37 CAS; M. Dogonneau, E. S. Kagan, V. I. Mikhailov, E. G. Rozantsev and V. D. Sholle, Synthesis, 1984, 895 CrossRef CAS; H. G. Aulich, in Nitrones, Nitronates and Nitroxides, S. Patai and Z. Rappoport Ed., John Wiley and Sons, New York, 1989, p. 313 CrossRef.
  2. α-Nitronyl aminoxyl radical is another important class of building block for moleclar-based magnetic materials; E. F. Ullman, J. H. Osiecki, D. G. B. Boocock and R. Darcy, J. Am. Chem. Soc., 1972, 94, 7049 Search PubMed.
  3. For a recent picture of molecular-based magnetic materials, see Proceedings of the 5th International Conference on Molecular-Based Magnets, Ed. K. Itoh, J. S. Miller and T. Takui, Mol. Cryst. Liq. Cryst., 1997, 305/306 Search PubMed.
  4. Cf. S. Nakatsuji and H. Anzai, J. Mater. Chem., 1997, 7, 2161 Search PubMed.
  5. S. Nakatsuji, A. Takai, K. Nishikawa, Y. Morimoto, N. Yasuoka, K. Suzuki, T. Enoki and H. Anzai, Chem. Commun., 1997, 275 RSC; S. Nakatsuji, A. Takai, K. Nishikawa, Y. Morimoto, N. Yasuoka and H. Anzai, Mol. Cryst. Liq. Cryst., 1998, 313, 229 Search PubMed.
  6. S. Nakatsuji, A. Kitamura, K. Nishikawa, Y. Morimoto, N. Yasuoka, H. Kawamura and H. Anzai, Mol. Cryst. Liq. Cryst., 1998, 313, 235 Search PubMed; S. Nakatsuji, A. Kitamura, A. Takai, K. Nishikawa, Y. Morimoto, N. Yasuoka and H. Anzai, Z. Naturforsch., 1998, 53b, 495 Search PubMed.
  7. S. Nakatsuji, A. Takai, M. Mizumoto, T. Ojima and H. Anzai, to be published.
  8. H. Sakurai, A. Izuoka and T. Sugawara, Mol. Cryst. Liq. Cryst., 1997, 306, 415 Search PubMed.
  9. Cf. Y. Murata and N. Mataga, Bull. Chem. Soc. Jpn., 1971, 44, 354 Search PubMed.
  10. C. D. Bryan, A. W. Cordes, R. C. Haddon, R. G. Hicks, D. K. Kennepohl, C. D. MacKinnon, R. T. Oakley, T. T. M. Palstra, A. S. Perel, S. R. Scott, L. F. Schneemeyer and J. V. Waszczak, J. Am. Chem. Soc., 1994, 116, 1205 CrossRef CAS.
  11. (a) C. D. Bryan, A. W. Cordes, R. M. Fleming, N. A. George, S. H. Glarum, R. C. Haddon, R. T. Oakley, T. T. M. Palstra, A. S. Perel, L. F. Schneemeyer and J. V. Waszczak, Nature, 1993, 365, 821 CrossRef CAS; (b) C. D. Bryan, A. W. Cordes, R. M. Fleming, N. A. George, S. H. Glarum, R. C. Haddon, C. D. MacKinnon, R. T. Oakley, T. T. M. Palstra and A. S. Perel, J. Am. Chem. Soc., 1995, 117, 6880 CrossRef CAS.
  12. C. D. Bryan, A. W. Cordes, N. A. George, R. C. Haddon, C. D. MacKinnon, R. T. Oakley, T. T. M. Palstra and A. S. Perel, Chem. Mater., 1996, 8, 762 CrossRef CAS.
  13. K. A. Huchison, G. Srdanov, R. Menon, J.-C. P. Gabriel, B. Knight and F. Wudl, J. Am. Chem. Soc., 1996, 118, 13081 CrossRef CAS.
  14. S. Nakatsuji, A. Takai, M. Mizumoto, H. Anzai, K. Nishikawa, Y. Morimoto, N. Yasuoka, J. Boy and G. Kaupp., Mol. Cryst. Liq. Cryst., in the press Search PubMed.
  15. G. M. Rosen, J. Med. Chem., 1974, 17, 358 CrossRef CAS See also, R. F. Borch, M. D. Bernstein and H. D. Durst, J. Org. Chem., 1971, 93, 2897 Search PubMed; C. F. Lane, Synthesis, 1975, 135.
  16. Cf. P. Bruni, G. Tosi and G. Valle, J. Chem. Soc., Chem. Commun., 1988, 1022 Search PubMed.
  17. C. Veyret and A. Blaise, Mol. Phys., 1973, 25, 873 CAS.
  18. T. Sugimoto, K. Ueda, M. Tsujii, H. Fujita, N. Hosoito, N. Kanehisa, Y. Shibamoto and Y. Kai, Chem. Phys. Lett., 1996, 249, 304 CrossRef CAS.
  19. Cf. R. N. Shibaeva, Z. Strukturnoi Khim., 1975, 16, 330 Search PubMed and references cited therein.
Click here to see how this site uses Cookies. View our privacy policy here.