Alkali metal and alkaline earth metal ion exchange with Na-4-mica prepared by a new synthetic route from kaolinite

(Note: The full text of this document is currently only available in the PDF Version )

Tatsuya Tatsuya and Sridhar Komarneni


Abstract

The ion exchange selectivities of a high-charge-density fluorophlogopite mica, Na-4-mica (ideal chemical composition Na4Mg6Al4Si4O20F4·xH2O) were investigated for alkali metal ions (Li+, K+ and Cs+) and alkaline earth metal ions (Sr2+ and Ba2+). The ion exchange isotherms were obtained at room temperature using Na-4-mica with a hydrated 12.11 Å lattice, which was easily and economically prepared from a mixture of NaF, MgO and calcined kaolinite. The selectivity depended considerably on the degree of loading of metal ions in the mica for the alkaline earth metals, but not for the alkali metal ions. The selectivity increased in the order: Li+ < Cs+ < K+ < Na+ for alkali metal and Sr2+ < Ba2+ for alkaline earth metal ions. Mg2+-exchanged Na-4-mica with an expanded 13.33 Å lattice was also prepared and its strontium and barium ion exchange were studied.


References

  1. H. van Olphen, An Introduction to Clay Colloid Chemistry, 2nd edn., Wiley, New York, 1977 Search PubMed.
  2. B. K. G. Theng, The Chemistry of Clay Organic Reactions, Wiley, New York, 1974 Search PubMed.
  3. Y. Morikawa, T. Goto, Y. Mora-Oka and T. Ikawa, Chem. Lett., 1982, 1667 CAS.
  4. H. Sakurai, K. Urabe and Y. Izumi, J. Chem. Soc., Chem. Commun., 1988, 1519 RSC.
  5. J. W. Johnson, J. F. Brody, R. M. Alexander, L. N. Yacullo and C. F. Klein, Chem. Mater., 1993, 5, 36 CrossRef CAS.
  6. M. Gregorkiewitz, J. F. Alcover, J. A. Rausell-Colom and J. M. Serratosa, 2ème Reunion des Groupes Europeens d'Argiles, Strasbourg, 1974, p. 64 Search PubMed.
  7. M. Gregorkiewitz and J. A. Rausell-Colom, Am. Mineral., 1987, 72, 515 CAS.
  8. W. J. Paulus, S. Komarneni and R. Roy, Nature (London), 1992, 357, 571 CrossRef CAS.
  9. S. Komarneni, W. J. Paulus and R. Roy, New Development in Ion Exchange; Proc. Int. Conf. Ion Exchange, ed. M. Abe, T. Kataoka and T. Suzuki, Kodansha, Tokyo, Japan, 1991, p. 51 Search PubMed.
  10. K. R. Franklin and E. Lee, J. Mater. Chem., 1996, 6, 109 RSC.
  11. S. Komarneni, R. Pidugu and J. E. Amonette, J. Mater. Chem., 1998, 8, 205 RSC.
  12. T. Kodama and S. Komarneni, J. Mater. Chem., 1999, 9, 533 RSC.
  13. R. M. Barrer and J. Klinowski, J. Chem. Soc., Faraday Trans. 1, 1974, 70, 2080 RSC.
  14. E. Glueckauf, Nature, 1949, 163, 414 CAS.
  15. F. Helfferich, Ion Exchange, Daver, New York, 1995, p. 170 Search PubMed.
  16. J. Kielland, J. Soc. Chem. Ind., 1935, 54, 232T Search PubMed.
  17. E. Ekedahl, E. Högfeldt and L. G. Sillén, Acta Chem. Scand., 1950, 4, 556 CAS.
  18. G. L. Gaines Jr. and H. C. Thomas, J. Chem. Phys., 1953, 21, 714 CrossRef.
  19. R. M. Barrer, Natural Zeolites, Occurrence, Properities, Use, ed. L. B. Sand and F. A. Mumpton, Pergamon, New York, 1978, p. 385 Search PubMed.
  20. R. M. Barrer and J. D. Falconer, Proc. R. Soc. London A, 1956, 236, 227.
  21. R. E. Grim, Clay Mineralogy, 2nd edn., McGraw-Hill, New York, 1968, p. 104 Search PubMed.
  22. M. Abe, J. Inorg. Nucl. Chem., 1979, 41, 85 CAS.
  23. M. Abe, K. Yoshigasaki and T. Sugiura, J. Inorg. Nucl. Chem., 1980, 42, 1753 CAS.
  24. M. Tsuji and S. Komarneni, J. Mater. Res., 1989, 4, 698 CAS.
Click here to see how this site uses Cookies. View our privacy policy here.