New electron donors: BEDT-TTF derivatives bearing a pyridine group; synthesis, crystal structure, electrochemical studies and the formation of charge transfer complexes

(Note: The full text of this document is currently only available in the PDF Version )

Wei Xu, Deqing Zhang, Hongxiang Li and Daoben Zhu


Abstract

Bis(ethylenedithio)tetrathiafulvalene (BEDT-TTF) derivatives 1a,b and 2a,b containing a pyridine group have been synthesized and their redox potentials have been studied by cyclic voltammetry in dichloromethane solution, which indicate that they are weaker electron donors than BEDT-TTF. Compound 2b has been studied by X-ray crystallography, which revealed a column-packing pattern in its crystal lattice. The charge transfer (CT) complexes formed between these new donors and tetracyanoquinodimethane (TCNQ), 2,3-dichloro-5,6-dicyanobenzo-1,4-quinone (DDQ) as well as cupric chloride (CuCl2) have been investigated. Among them the CT complexes 1b1.1·TCNQ and 1a·CuCl2 show conductivity in the semiconducting range at room temperature (σrt=1.6×10–3 S cm–1 for 1b1.1·TCNQ, 4.3×10–3 S cm–1 for 1a·CuCl2 measured on a compressed pellet). From the results of X-ray photoelectron spectroscopy (XPS) and conductivity measurements, we suggest that charge transfer and coordination contact coexist in the complex 1a·CuCl2.


References

  1. F. Wudl, D. Wobschall and E. J. Hufnagel, J. Am. Chem. Soc., 1972, 94, 671.
  2. (a) J. M. Williams, J. R. Ferraro, R. J. Thorn, K. D. Carlson, U. Geiser, H. H. Wang, A. M. Kini and M. H. Whangbo, Organic Superconductors(including fullerenes), Prentice Hall, Englewood Cliffs, NJ, 1992 Search PubMed; (b) M. R. Bryce, J. Mater. Chem., 1995, 5, 1481 RSC; (c) J. Roncali, J. Mater. Chem., 1997, 7, 2307 RSC; (d) P. Day and M. Kurmoo, J. Mater. Chem., 1997, 7, 1291 RSC.
  3. D. Jérome, A. Mazaud, M. Ribault and K. Bechgaard, J. Phys. Lett. (France), 1980, 41, 95 Search PubMed.
  4. D. Jérome, Science, 1991, 252, 1509 CAS.
  5. A. Graja, Condens. Matter News, 1994, 3, 1994 Search PubMed.
  6. P. Blanchard, M. Sallé, G. Duguay, M. Jubault and A. Gorgues, Tetrahedron Lett., 1992, 33, 2685 CrossRef CAS.
  7. L. M. Goldenberg, J. Y. Becker, O. P. Levi, V. Y. Khodorkovsky, L. M. Shapiro, M. R. Bryce, J. P. Cresswell and M. C. Petty, J. Mater. Chem., 1997, 7, 901 RSC.
  8. N. Svenstrup and J. Becher, Synthesis, 1995, 215 CrossRef CAS; O. Ya. Neilands, Ya. Ya. Katsen and Ya. N. Kreitskerga, Russian Patent SU 1428753.
  9. K. Hartke, T. Kissel, J. Quante and R. Matusch, Chem. Ber., 1980, 112, 1898.
  10. K. S. Varma, A. Bury, N. J. Harris and A. E. Underhill, Synthesis, 1987, 837 CrossRef CAS.
  11. H. Kobayashi, A. Kobayashi, Y. Sasaki, G. Saito and H. Inokuchi, Bull. Chem. Soc. Jpn., 1986, 59, 301 CAS.
  12. F. H. Allen, O. Kennard, D. G. Watson, L. Bramer, A. G. Orpen and R. Taylor, J. Chem. Soc., Perkin Trans. 2, 1987, Suppl. 1 RSC.
  13. J. S. Chappell, A. N. Bloch, W. A. Bryden, M. Maxfield, T. O. Poehler and D. O. Cowan, J. Am. Chem. Soc., 1981, 103, 2442 CrossRef.
  14. G. M. Sheldrick, SHELXL-93, Program for Crystal Structure Refinement, University of Göttingen, Germany, 1993 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.