Nanosized hydroxyapatite powders from microemulsions and emulsions stabilized by a biodegradable surfactant

(Note: The full text of this document is currently only available in the PDF Version )

G. K. Lim, J. Wang, S. C. Ng and L. M. Gan


Abstract

Ultrafine hydroxyapatite powders have been successfully synthesized in inverse microemulsions and emulsions consisting of petroleum ether as the oil phase, 1.0 M CaCl2 solution as the aqueous phase and biodegradable KB6ZA as the surfactant. The titration of 0.6 M (NH4)2HPO4 aqueous solution into the inverse microemulsion and emulsions containing 25.0 and 35.0 wt% aqueous phase, resulted in hydroxyapatite precursors that were nanometer sized and more or less spherical in morphology. However, they underwent a considerable degree of particle coarsening when calcined at 650[thin space (1/6-em)]°C for 6 h. A nanocrystalline hydroxyapatite powder, which exhibited a dendritic agglomerate morphology, was synthesized in an oil-in-water emulsion containing 90.0 wt% aqueous phase. It shows an average particle size of 25 nm upon calcination at 650[thin space (1/6-em)]°C for 6 h, as little particle coarsening and growth in crystallite size were observed at the calcination temperature. The inverse microemulsion- and emulsion-derived hydroxyapatites exhibit a degree of type B carbonate substitution, which cannot be eliminated by calcination in air at 650[thin space (1/6-em)]°C.


References

  1. K. de Groot, Bioceramics of Calcium Phosphate, CRC Press, Boca Raton, FL, 1984 Search PubMed.
  2. K. de Groot, Biomaterials, 1980, 1, 47 CAS.
  3. L. L. Hench, J. Am. Ceram. Soc., 1991, 74, 1487 CAS.
  4. P. Ducheyne, L. L. Hench, A. Kagan, M. Martens, A. Burssen and J. Muller, J. Biomed. Mater. Res., 1980, 14, 225 CAS.
  5. T. Takaoka, M. Okumura, H. Ohgushi, K. Inone, Y. Takakura and S. Tamai, Biomaterials, 1996, 17, 1499 CrossRef CAS.
  6. T. Suzuki, T. Hatsushika and Y. Hayakawa, J. Chem. Soc., Faraday Trans. 1, 1982, 78, 3605 RSC.
  7. J. Reichert and J. G. P. Binner, J. Mater. Sci., 1996, 31, 1231 CAS.
  8. T. Kanazawa, Materials Science Monographs: Inorganic Phosphate Materials, Elsevier, Tokyo, 1989, pp. 15–76 Search PubMed.
  9. G. K. Lim, J. Wang, S. C. Ng and L. M. Gan, Mater. Lett., 1996, 28, 431 CrossRef CAS.
  10. G. K. Lim, J. Wang, S. C. Ng, C. H. Chew and L. M. Gan, Biomaterials, 1997, 18, 1433 CrossRef CAS.
  11. M. R. Porter, Handbook of Surfactants, Chapman and Hall, New York, 1991 Search PubMed.
  12. R. D. Swisher, Surfactant Biodegradation, Marcel Dekker Inc., New York, 1970 Search PubMed.
  13. J. Sanchez Leal, M. T. Garcia, I. Ribosa and F. Cornelles, in Surfactant in Solutions, ed. K. L. Mittal, Surfactant Science Series Vol. 64, Marcel Dekker, New York, 1996, p. 379 Search PubMed.
  14. J. H. Clint, Surfactant Aggregation, Chapman and Hall, New York, 1992 Search PubMed.
  15. J. C. Elliot, The Crystallographic Structure of Dental Enamel and Related Apatites, PhD Thesis, University of London, 1964 Search PubMed.
  16. W. H. Emerson and E. E. Fisher, Arch. Oral Biol., 1962, 7, 671 CAS.
  17. R. Z. LeGeros, J. Dent. Res., 1990, 69, 567 Search PubMed.
  18. R. Z. LeGeros, Biological and Synthetic Apatites in Hydroxyapatite and Related Materials, ed. P. W. Brown and B. Constantz, CRC Press, Boca Raton, FL, 1994 Search PubMed.
  19. R. Z. LeGeros, Prog. Cryst. Growth Charact., 1981, 4, 1 CAS.
  20. L. G. Ellies, D. G. A. Nelson and J. D. B. Featherson, J. Biomed. Mater. Res., 1988, 22, 541 CAS.
Click here to see how this site uses Cookies. View our privacy policy here.