Crystal chemistry of mixed Bi3+-An+ (An+=Na+, K+, Sr2+, Ba2+, Tl+, Pb2+) vanadium hollandite materials

(Note: The full text of this document is currently only available in the PDF Version )

Olivier Mentré, Anne-Claire Dhaussy and Francis Abraham


Abstract

Hollandite oxides, AxBiyV8O16 (A=Na, K, Sr, Ba, Tl, Pb) with varying x, y ratios have been synthesized and studied. The feasibility of obtaining such materials under our normal solid state conditions is to be highlighted considering the fact that previous work on potassium-only compounds required high pressure and high temperature. It is therefore noteworthy that introduction of Bi3+ in the framework is easier than for An+ co-cations. Crystal structures refined from single crystals of nominal compositions A0.5Bi1.1V8O16 evidenced a segregation between An+ and Bi3+ ions. They respectively occupy the center of a square prism (K, Sr, Ba, Pb cases) and the center of a quasi-square plane (Bi3+) while Na+ and Tl+ behave differently. This involves, since the tunnels are almost fully occupied, the impossibility of cohabitation of the same tunnels by the two antogonist species which would lead to an unrealistic A-Bi distance of 1.5 Å. The preparation of polycrystalline ABiV8O16 samples, in which the tunnels are filled, indicates a disordered distribution of A- and Bi-only tunnels since no supercell diffraction lines were observed. Finally electric conductivity measurements on mixed K-Bi materials are in agreement with a hopping semiconductivity due to the V3+-V4+ mixed valence of the transition metal.


References

  1. F. Gronvold, H. Haraldsen, B. Pedersen and T. Tufte, Rev. Chim. Miner., 1969, 6, 215 Search PubMed.
  2. F. Cansell, Presented at the Galerne 98 Summer school, La Rochette, 1998 Search PubMed.
  3. J. B. Sokoloff, Phys. Rev. B, 1978, 17, 4843 CrossRef CAS.
  4. S. K. Khanna, G. Grüner, R. Orbach and H. U. Beyeler, Phys. Rev. Lett., 1981, 47, 255 CrossRef CAS.
  5. A. E. Ringwood, S. E. Kesson, N. G. Ware, W. Hibberson and A. Major, Nature, 1979, 278, 219 CAS.
  6. H. Okada, N. Kinomura and S. Kume, Mater. Res. Bull., 1978, 13, 1047 CAS.
  7. W. Abriel, F. Rau and K.-J. Range, Mater. Res. Bull., 1979, 14, 1463 CAS.
  8. W. Abriel, C. Garbe, F. Rau and K.-J. Range, Z. Kristallogr., 1986, 176, 113 CAS.
  9. W. Abriel and K.-J. Range, Z. Kristallogr., 1987, 178, 225 CAS.
  10. Y. Kanke, E. Takayama-Muromachi, K. Kato and K. Kosuda, J. Solid State Chem., 1995, 115, 88 CrossRef CAS.
  11. F. Abraham and O. Mentre, J. Solid State Chem., 1994, 109, 127 CrossRef CAS.
  12. A. Byström and A. M. Byström, Acta Crystallogr., 1950, 3, 146 CrossRef CAS.
  13. O. Mentre and F. Abraham, J. Solid State Chem., 1996, 125, 91 CrossRef CAS.
  14. J. Feldmann and Hk. Müller–Buschbaum, Z. Naturforsch., Teil B, 1995, 50, 1163 CAS.
  15. J. Feldmann and Hk. Müller–Buschbaum, Z. Naturforsch., Teil B, 1996, 51, 1037 CAS.
  16. P. A. Ramakrishnan, M. Sugantha, U. V. Vadaraju and T. Nagarajan, Mater. Lett., 1998, 36, 137 CrossRef CAS.
  17. J. De Meulenaer and H. Tompa, Acta Crystallogr., 1965, 19, 1014 CrossRef CAS.
  18. International Tables for X-Ray Crystallography, Kynoch Press, Birmingham, 1974, vol. 4  Search PubMed.
  19. D. T. Cromer and D. Liberman, J. Chem. Phys., 1970, 53, 1891 CrossRef CAS.
  20. C. T. Prewitt, SFLS-5, Report ORNL- TM 305 Oak Ridge National Laboratory, Oak Ridge, Tennessee, 1966.
  21. Y. Kanke, E. Takayama-Muromachi, K. Kato and K. Kosuda, J. Solid State Chem., 1994, 113, 125 CrossRef CAS.
  22. H. Leligny, Ph. Labbe, M. Ledesert and B. Raveau, Acta Crystallogr., Sect. B, 1992, 48, 134 CrossRef.
  23. R. D. Shannon, Acta Crystallogr., Sect. A, 1976, 32, 751 CrossRef.
  24. G. Smith and R. L. Snyder, J. Appl. Cryst., 1979, 12, 60 CrossRef CAS.
  25. R. Giovanoli and M. Faller, Chimia, 1989, 43, 54 CAS.
  26. K. Yvon, W. Jeitschko and E. Parthe, J. Appl Crystallogr., 1977, 10, 73 CrossRef.
Click here to see how this site uses Cookies. View our privacy policy here.