Structure, morphology and surface properties of nanostructured ZrO2 particles

(Note: The full text of this document is currently only available in the PDF Version )

Sigrid Benfer and Erich Knözinger


Abstract

Nanocrystalline zirconium dioxide particles have been produced by means of thermal decomposition of a liquid metal organic precursor in a flow reactor system. X-Ray diffraction patterns show that the powder consists of a mixture of the monoclinic and tetragonal phase and that the phase fractions depend on the experimental conditions during the preparation as well as on the subsequent thermal treatment of the sample. The mean particle diameter of the synthesized powders is ca. 40-50 Å as estimated from the line width of Bragg reflections and from transmission electron micrographs. The crystallites are non-porous and exhibit a rough surface incorporating a high concentration of low-coordinated surface sites. In agreement with the small particle size, the powder has a high specific surface area (>200 m2 g–1), which surmounts that of commercially available materials by a factor >3. The structure and morphology of the particles is essentially preserved during extensive thermal treatment up to 500[thin space (1/6-em)]°C. Hydroxyl groups as IR active surface probes clearly indicate that the phase fractions on the surface and in the bulk strongly differ from each other. Low-coordinated OH groups on monoclinic surface domains give rise to H/D exchange reactions with D2 already at room temperature. They are evidenced and monitored with time by FTIR spectroscopy.


References

  1. T. Yamagushi, Catal. Today, 1994, 20, 199 CrossRef CAS.
  2. M. Y. He and J. G. Ekerdt, J. Catal., 1984, 87, 381 CrossRef CAS.
  3. K. Domen, J. Kondo, K. Maruya and T. Onishi, Catal. Lett., 1992, 12, 127 CAS.
  4. Y. Nakano, T. Yamaguchi and K. Tanabe, J. Catal., 1983, 80, 307 CrossRef CAS.
  5. G. K. Chuah, S. Jaenicke, S. A. Cheong and K. S. Chan, Appl. Catal. A: Gen., 1996, 145, 267 CrossRef CAS.
  6. C. M. Foster, G. R. Bai, J. C. Parker and M. N. Ali, J. Mater. Res., 1993, 8, 1977 CAS.
  7. M. Inoue, H. Kominami and T. Inui, Appl. Catal. A, 1995, 121, L1 CrossRef CAS.
  8. T. Okubo and H. Nagamoto, J. Mater. Sci., 1995, 30, 749 CrossRef CAS.
  9. M. L. Rojas-Cervantes, R. M. Martin-Aranda, A. J. Lopez-Peinado and J. de D. Lopez-Gonzales, J. Mater. Sci., 1994, 29, 3743 CAS.
  10. H. Toraya, J. Am. Ceram. Soc., 1989, 72, 662 CAS.
  11. R. Suyama, T. Asida and S. Kume, J. Am. Ceram. Soc., 1985, 68, 314.
  12. S. Brunauer, P. H. Emmett and E. Teller, J. Am. Chem. Soc., 1938, 60, 309 CrossRef CAS.
  13. P. Hoffmann and E. Knözinger, Surf. Sci., 1987, 188, 181 CAS.
  14. P. Scherrer, Göttinger Nachr., 1918, 2, 98 Search PubMed.
  15. B. E. Warren, X-Ray diffraction, Addison-Wesley, Reading, 1969 Search PubMed.
  16. G. Caglioti, A. Paoletti and F. P. Ricci, Nucl. Instrum., 1958, 3, 223 Search PubMed.
  17. W. W. Barker, F. P. Bailey and W. Garrett, J. Solid State Chem., 1973, 7, 448 CAS.
  18. R. C. Garvie, J. Phys. Chem., 1965, 69, 1238 CrossRef CAS.
  19. R. C. Garvie and M. F. Goss, J. Mater. Sci., 1986, 21, 1253 CAS.
  20. R. C. Garvie, J. Phys. Chem., 1978, 82, 218 CrossRef CAS.
  21. W. Vogel, B. Tesche and W. Schulze, Chem. Phys., 1983, 74, 137 CrossRef CAS.
  22. R. Nitsche, M. Winterer, M. Croft and H. Hahn, Nucl. Instrum. Methods B, 1995, 97, 127 CrossRef CAS.
  23. D. K. Smith and H. W. Newkirk, Acta Crystallogr., 1965, 18, 983 CrossRef CAS.
  24. J. D. McCoullough and K. N. Trueblood, Acta Crystallogr., 1959, 12, 507 CrossRef CAS.
  25. K.-H. Jacob, E. Knözinger and S. Benfer, J. Mater. Chem., 1993, 3, 651 RSC.
  26. G. Teufer, Acta Crystallogr., 1962, 15, 1187 CrossRef CAS.
  27. E. Knözinger, K.-H. Jacob, S. Singh and P. Hofmann, Surf. Sci., 1993, 290, 388 CrossRef.
  28. S. Benfer, P. Hofmann and E. Knözinger, J. Mol. Struct., 1997, 410–411, 115 CrossRef CAS.
  29. K.-H. Jacob, Dissertation, Siegen, 1992.
Click here to see how this site uses Cookies. View our privacy policy here.