Tetraalkyl- and dialkyl-substituted BEDT-TTF derivatives and their cation-radical salts: synthesis, structure, and properties

(Note: The full text of this document is currently only available in the PDF Version )

Aravinda M. Kini, James P. Parakka, Urs Geiser, Hsien-Hau Wang, Felix Rivas, Ernest DiNino, Seddon Thomas, James D. Dudek and Jack M. Williams


Abstract

Tetraalkyl and dialkyl derivatives, where alkyl=ethyl and propyl, of the organic electron donor molecule bis(ethylenedithio)tetrathiafulvalene, BEDT-TTF or ET, have been synthesized via the Diels-Alder approach. Several cation-radical salts of these new donors have been prepared and structurally characterized, and found to contain donor molecules in nominally higher oxidation states (+1, +1.5 and +2) than the typically observed oxidation state of +0.5 in BEDT-TTF salts. The higher solubility of the tetraalkyl and dialkyl derivatives in solvents used for crystal growth is proposed as the principal reason for this finding. Surprisingly, X-ray crystallographic studies reveal that the alkyl groups in the neutral tetraethyl-ET as well as the oxidized tetraethyl-ET and diethyl-ET molecules in their cation-radical salts adopt axial configurations, rather than the expected equatorial configurations. Electrical properties of the cation-radical salts have been found to be either insulating or semiconducting, consistent with the higher oxidation states of the donor molecules in the salts and the crystal structures.


References

  1. See e.g., Special Issue on Molecular Conductors, J. Mater. Chem., 1995, 10, 1469 Search PubMed.
  2. L. G. Caron, in Organic Conductors—Fundamentals and Applications, ed. J.-P. Farges, Marcel-Dekker, New York, 1994, Ch. 2, pp. 25–73 Search PubMed.
  3. (a) J. M. Williams, J. R. Ferraro, R. J. Thorn, K. D. Carlson, U. Geiser, H. H. Wang, A. M. Kini and M.-H. Whangbo, Organic Superconductors (Including Fullerenes), Prentice Hall, Englewood Cliffs, NJ, 1992 Search PubMed; (b) T. Ishiguro and K. Yamaji, Organic Superconductors, Springer-Verlag, Berlin Heidelberg, 1990 Search PubMed.
  4. (a) J. Hellberg, K. Balodis, M. Moge, P. Korral and J.-U. von Schütz, J. Mater. Chem., 1997, 7, 31 RSC; (b) J. Yamada, S. Mishima, H. Anzai, M. Tamura, Y. Nishio, K. Kajita, T. Sato, H. Nishikawa and K. Kikuchi, Chem. Commun., 1996, 2517 RSC; (c) Y. Misaki, T. Ohta, N. Higuchi, H. Fujiwara, T. Yamabe, T. Mori, H. Mori and S. Tanaka, J. Mater. Chem., 1995, 5, 1571 RSC; (d) A. J. Moore, M. R. Bryce, D. J. Ando and M. B. Hursthouse, J. Chem. Soc., Chem. Commun., 1991, 320 RSC; (e) T. K. Hansen, M. V. Lakshmikantham, M. P. Cava and J. Becher, J. Chem. Soc., Perkin Trans. 1, 1991, 2873 RSC.
  5. (a) J. D. Wallis, A. Karrer and J. D. Dunitz, Helv. Chim. Acta, 1986, 69, 69 CrossRef; (b) A. I. Kotov, C. Faulmann, P. Cassoux and E. B. Yagubskii, J. Org. Chem., 1994, 59, 2626 CrossRef CAS.
  6. A. M. Kini, U. Geiser, H. H. Wang, K. R. Lykke, J. M. Williams and C. F. Campana, J. Mater. Chem., 1995, 5, 1647 RSC.
  7. J. P. Parakka, A. M. Kini and J. M. Williams, Tetrahedron Lett., 1996, 37, 8085 CrossRef CAS.
  8. J. M. Williams, Mol. Cryst. Liq. Cryst., 1996, 284, 449 Search PubMed.
  9. (a) C. Benming, F. Deilacher, M. Hoch, H. J. Keller, P. Wu, P. Armbruster, R. Geiger, S. Kahlich and D. Schweitzer, Synth. Met., 1991, 42, 2101 CrossRef; (b) S. Matsumiya, A. Izuoka, T. Sugawara, T. Taruishi and Y. Kawada, Bull. Chem. Soc. Jpn., 1993, 66, 513 CAS.
  10. J. S. Zambounis, C. W. Mayer, K. Hauenstein, B. Hilti, W. Hofher, J. Pfeiffer, M. Bürkle and G. Rihs, Adv. Mater., 1992, 4, 33 CAS.
  11. (a) O. Neilands, J. Kaicens and J. Kreicberga, USSR Patent #SU 1428753, 1988;; Chem. Abstr., 1989, 110, 95252k Search PubMed; (b) O. Neilands, J. Kacens and J. Kreicberga, Zh. Org. Khim., 1989, 25, 658 CAS.
  12. V. Y. Khodorkovsky, J. Y. Becker and J. Bernstein, Synthesis, 1992, 1071 CrossRef.
  13. Review: N. Svenstrup and J. Becher, Synthesis, 1995, 215 Search PubMed.
  14. Subsequent to the completion of our synthesis of tetraethyl-ET and tetra(n-propyl)-ET a report appeared in the literature on the Diels–Alder reaction between the trithione oligomer and trans-stilbene, see D.-Y. Noh, H.-J. Lee, J. Hong and A. E. Underhill, Tetrahedron Lett., 1996, 42, 7603 Search PubMed.
  15. T. Mori and H. Inokuchi, Chem. Lett., 1986, 2069 CAS.
  16. (a) K. A. Abboud, M. B. Clevenger, G. F. de Oliviera and D. R. Talham, J. Chem. Soc., Chem. Commun., 1993, 1560 RSC; (b) K.-L. Chou, M. A. Quijada, M. B. Clevenger, G. F. de Oliviera, K. A. Abboud, D. B. Tanner and D. R. Talham, Chem. Mater., 1995, 7, 530 CrossRef CAS.
  17. (a) R. P. Shibaeva, R. M. Lobkovskaya, É. B. Yagubskii and E. É. Kostyuchenko, Kristallografiya, 1986, 31, 455 (Engl. Transl. Sov. Phys. Crystallogr., 1986, 31, 267) Search PubMed; (b) M. A. Beno, U. Geiser, K. L. Kostka, H. H. Wang, K. S. Webb, M. A. Firestone, K. D. Carlson, L. Nuñez, M.-H. Whangbo and J. M. Williams, Inorg. Chem., 1987, 26, 1912 CrossRef CAS.
  18. H. Yamochi, H. Urayama, G. Saito, K. Oshima, A. Kawamoto and J. Tanaka, Chem. Lett., 1988, 1211 CAS.
Click here to see how this site uses Cookies. View our privacy policy here.