Catalytic transformation of the gases evolved during the thermal decomposition of HDPE using acid-activated and pillared clays

(Note: The full text of this document is currently only available in the PDF Version )

Christopher Breen and Philip M. Last


Abstract

HDPE was thermally decomposed in a thermobalance and the evolved gases were passed through a bed of catalyst. Two acid activated clays of different structure were used, i.e. sepiolite (SEP), which is a fibrous clay mineral, and smectite (K10) which is a layered mineral. In addition two pillared smectites were studied one which was pillared with an Al species (AZA) and the other with an Al/Fe-species (FAZA). The thermal and catalytic decomposition of HDPE was studied under dynamic (35 to 650[thin space (1/6-em)]°C at 10[thin space (1/6-em)]°C min–1) and isothermal (60 min at 420[thin space (1/6-em)]°C) conditions. The evolved gases were analysed using TG-OTM-GC-MS. The thermal decomposition of HDPE yielded characteristic quartets of peaks assigned to n-alkanes, alk-1-enes, alk-x-enes and α,ω-dienes in the range C4-C20. Species of higher molecular weight than C20 were not detected. All four catalysts converted the alkenes present in the thermally generated off gases into light gases and aromatic species including respectable quantities of toluene, xylenes, tri- and tetra-methylbenzenes. Ethylbenzenes and naphthalenes were produced to a lesser extent. AZA and FAZA produced the largest yield of aromatics and sepiolite is considered to produce significant quantities of low molecular weight gases in the isothermal process. The product distribution over sepiolite suggested that there were fewer dehydrocyclisation sites on this catalyst. None of the catalysts used was capable of cracking the saturated alkanes.


References

  1. K. Liu and H. Meuzelaar, Fuel Process. Technol., 1996, 49, 1 CrossRef CAS.
  2. W. Ding, J. Liang and L. Anderson, Fuel Process. Technol., 1997, 51, 47 CrossRef CAS.
  3. M. Uddin, K. Koizumi, K. Murata and Y. Sakata, Polym. Degrad. Stab., 1997, 56, 37 CrossRef CAS.
  4. W. McCaffrey, M. Kamal and D. Cooper, Polym. Degrad. Stab., 1995, 47, 133 CrossRef CAS.
  5. Y. Uemichi, A. Ayame, Y. Kashiwaya and H. Kanoh, J. Chromatogr., 1983, 259, 69 CrossRef CAS.
  6. Y. Uemichi, Y. Kashiwaya, M. Tsukidate, A. Ayame and H. Kanoh, Bull. Chem. Soc. Jpn., 1983, 56, 2768 CAS.
  7. R. Mordi, R. Fields and J. Dwyer, J. Anal. Appl. Pyrolysis, 1994, 29, 45 CrossRef CAS.
  8. X. Xiao, W. Zmierczak and J. Shabtai, Div. Fuel Chem., 1995, 40, 4 Search PubMed.
  9. G. Audisio, A. Silvani, P. Beltrame and P. Carniti, J. Anal. Appl. Pyrolysis, 1984, 7, 83 CrossRef CAS.
  10. P. L. Beltrame, P. Carniti, G. Audisio and F. Bertini, Polym. Degrad. Stab., 1989, 26, 209 CAS.
  11. T. Yoshida, A. Ayame and H. Kanoh, Bull. Jpn. Petroleum Inst., 1975, 17, 218 Search PubMed.
  12. C. Vasile, P. Onu, V. Barboiu, M. Sabliovschi, G. Moroi, D. Ganju and M. Florea, Acta Polym., 1988, 39, 306 CAS.
  13. C. Vasile, P. Onu, V. Barboiu, M. Sabliovschi and G. Moroi, Acta Polym., 1985, 36, 543 CAS.
  14. C. L. Thomas, J. Hickey and G. Stecker, Ind. Chem. Eng., 1950, 42, 866 Search PubMed.
  15. Pillared Layered Structures: Current Trends and Applications, ed. I. V. Mitchell, Elsevier, Barking, 1990 Search PubMed.
  16. S. Chevalier, R. Franck, J. F. Lambert, D. Barthomeuf and H. Suquet, Appl. Catal. A: General, 1994, 110, 153 CrossRef CAS.
  17. B. Nagy and W. F. Bradley, Am. Mineral., 1955, 40, 855.
  18. K. Brauner and J. Preisinger, Tschermaks. Mineral. Petrogr. Mitt., 1956, 6, 120 Search PubMed.
  19. R. M. Barrer, N. Mackenzie and D. M. McLeod, J. Phys. Chem., 1954, 58, 568 CrossRef CAS.
  20. J. de D. Lopez-Gonzalez, A. Ramirez-Saenz, F. Rodriguez-Reinoso, C. Valenzuela-Calahorro and L. Zurita-Herrera, Clay Miner., 1981, 16, 103 Search PubMed.
  21. J. L. Bonilla, J. de D. Lopez-Gonzalez, A. Ramirez-Saenz, F. Rodriguez-Reinoso, C. Valenzuela-Calahorro and L. Zurita-Herrera, Clay Miner., 1981, 16, 173 Search PubMed.
  22. A. Corma, V. Fornes, A. Mifsud and J. Perez-Pariente, Clay Miner., 1984, 19, 673 Search PubMed.
  23. T. Curlee and S. Das, Resour. Conserv. Recycl., 1991, 5, 343 CrossRef.
  24. J. A. Ballantine, P. Graham, I. Patel, J. H. Purnell, K. Williams and J. M. Thomas, Proc. Int. Clay Conf. Denver, 1987, 311 Search PubMed.
  25. C. Breen, Clay Miner., 1991, 26, 473 Search PubMed.
  26. V. Haensel, Adv. Catal., 1951, 3, 194.
  27. Y-H. Lin, P. N. Sharrat, A. A. Garforth and J. Dwyer, Thermochim. Acta, 1997, 294, 45 CrossRef CAS.
  28. Y. Ishihara, H. Nanbu, T. Ikemura and T. Takesue, Fuel, 1990, 69, 978 CrossRef CAS.
  29. H. Ohkita, R. Nishiyama, Y. Tochihara, T. Mizushima, N. Kakuta, Y. Morioka, A. Ueno, Y. Namiki, S. Tanifuji, H. Katoh, H. Sunazuka, R. Nakayama and T. Kuroyanagi, Ind. Eng. Chem. Res., 1993, 32, 3112 CrossRef CAS.
  30. W. O. Haag, R. M. Largo and P. B. Weisz, Faraday Discuss Chem. Soc., 1981, 72, 317 RSC.
  31. A. R. Songip, T. Masuda, H. Kuwahara and K. Hashimoto, Appl. Catal. B: Environ., 1993, 2, 165 CrossRef CAS.
  32. A. R. Songip, T. Masuda, H. Kuwahara and K. Hashimoto, Energy Fuels, 1994, 8, 136 CrossRef CAS.
  33. H. Ming-Yuan, L. Zhongui and M. Enze, Catal. Today, 1988, 2, 321 CrossRef CAS.
  34. S. A. Bagshaw and R. P. Cooney, Chem. Mater., 1993, 5, 1101 CrossRef CAS.
  35. S. Bodoardo, F. Figueras and E. Garrone, J. Catal., 1994, 147, 223 CrossRef.
  36. S. Perathoner and A. Vaccari, Clay Miner., 1997, 32, 123 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.