Identification of superconducting phases in the Ba-Ca-Cu-O system: an unstable phase with Tc≈126 K and its derivative with Tc≈90 K

(Note: The full text of this document is currently only available in the PDF Version )

T. Hosomi, H. Suematsu, H. Fjellvåg, M. Karppinen and H. Yamauchi


Abstract

Superconducting samples with to line T[thin space (1/6-em)]c values as high as 126 K were obtained in the Ba-Ca-Cu-O system by means of high-pressure synthesis. The X-ray powder diffraction pattern obtained for the as-synthesized 126 K phase was indexed with a tetragonal unit cell and lattice parameters, a=3.85 Å and c=28.3 Å. When exposed to air, the 126 K phase changes to another superconducting phase with T[thin space (1/6-em)]c≈90 K. The crystal structure of the 90 K derivative phase was successfully studied by electron and synchrotron X-ray powder diffraction. The unit cell has body-centered symmetry, space group I4/mmm, a=3.8486 Å, c=33.979 Å. The metal composition in the 90 K phase was estimated by EDX to be Ba:Ca:Cu=2.0:2.1:3, and from TG-MS and IR spectroscopy analyses the presence of H2O molecules (and possibly also carbonate groups) was revealed. A layered-cuprate M-m223 structure was concluded for each of the two phases. For the 90 K phase, two types of structural models, assuming either H or (H,C) composition for the charge-reservoir constituent M, were derived and tested. However, refinement of the synchrotron diffraction data could not differentiate between the two models, both giving reasonable agreement with experimental data. For the 126 K phase, a 0223 structure is proposed, and the location of the oxygen atom in the (BaO)2 double layer is discussed. Finally, it is believed that, upon the phase change, besides H2O (CO2) molecules, additional protons from a redox reaction involving copper and/or peroxide-type oxygen are incorporated into the 126 K phase.


References

  1. H. Yamauchi, M. Karppinen and S. Tanaka, Physica C, 1996, 263, 146 CrossRef CAS.
  2. H. Yamauchi and M. Karppinen, Superlatt. Microstruct., 1997, 21A, 127 Search PubMed.
  3. S. Adachi, H. Yamauchi, S. Tanaka and N. Mori, Physica C, 1993, 208, 226 CrossRef.
  4. S. Adachi, H. Yamauchi, S. Tanaka and N. Mori, Physica C, 1993, 212, 164 CrossRef CAS.
  5. T. Kawashima and E. Takayama-Muromachi, Physica C, 1996, 267, 106 CrossRef CAS.
  6. C.-Q. Jin, S. Adachi, X.-J. Wu, H. Yamauchi and S. Tanaka, Physica C, 1994, 223, 238 CrossRef CAS.
  7. X.-J. Wu, S. Adachi, C.-Q. Jin, H. Yamauchi and S. Tanaka, Physica C, 1994, 223, 243 CrossRef CAS.
  8. M. A. Alario-Franco, C. Chaillout, J. J. Capponi, J. L. Tholence and B. Souleite, Physica C, 1994, 222, 243 CrossRef.
  9. H. Ihara, K. Tokiwa, H. Ozawa, M. Hirabayashi, A. Negishi, H. Matsuhara and Y. S. Song, Jpn. J. Appl. Phys., 1994, 33, L503 CrossRef CAS.
  10. T. Kawashima, Y. Matsui and E. Takayama-Muromachi, Physica C, 1994, 224, 69 CrossRef CAS.
  11. C. Chaillout, S. Le Floch, E. Gautier, P. Bordet, C. Acha, Y. Feng, A. Sulpice, J. L. Tholence and M. Marezio, Physica C, 1996, 266, 215 CrossRef CAS.
  12. M. Nunez-Regueiro, M. Jaime, M. A. Alario-Franco, J. J. Capponi, C. Chaillout, J. L. Tholence, A. Sulpice and P. Lejay, Physica C, 1994, 235–240, 2093 CrossRef CAS.
  13. C. W. Chu, Z. L. Du, Y. Cao, Y. Y. Xue, Y. Y. Sun, I. Ruskova and L. Gao, Philos. Mag. B, 1997, 75, 15 Search PubMed.
  14. Y. Y. Xue, Y. Y. Sun, I. A. Rusakova, D. K. Ross, Z. L. Du, N. L. Wu, Y. Cao, L. Gao, B. R. Hickey and C. W. Chu, Physica C, 1998, 294, 316 CrossRef CAS.
  15. C. W. Chu, Y. Y. Xue, Z. L. Du, Y. Y. Su, L. Gao, N. L. Wu, Y. Cao, I. Rusakova and K. Ross, Science, 1997, 277, 1081 CrossRef CAS.
  16. H. Yamauchi and T. Hosomi, Chemistry (Kagaku), 1998, 53(6), 74 Search PubMed (in Japanese).
  17. N. L. Wu, Z. L. Du, Y. Y. Xue, I. Rusakova, D. K. Ross, L. Gao, Y. Cao, Y. Y. Sun, C. W. Chu, M. Hervieu and B. Raveau, Physica C, 1998, in press  Search PubMed.
  18. T. Ito, H. Suematsu, H. Sakata, O. Fukunaga, M. Karppinen and H. Yamauchi, Mater. Sci. Eng. B, 1998, 54, 112 Search PubMed.
  19. J. Rietveld, J. Appl. Crystallogr., 1969, 2, 65 CrossRef CAS.
  20. A. C. Larson and R. B. von Dreele, GSAS General Structure Analysis System, LANSCE, MS-H 805, Los Alamos National Laboratory, Los Alamos, NM 87545, USA .
  21. L. Gao, Z. L. Du, Y. Cao, I. Rusakova, Y. Y. Sun, Y. Y. Xue and C. W. Chu, Mod. Phys. Lett. B, 1995, 21, 1397 CrossRef CAS.
  22. Y. Shimakawa, J. D. Jorgensen, D. G. Hinks, H. Shaked, R. L. Hitterman, F. Izumi, T. Kawashima, E. Takayama-Muromachi and T. Kamiyama, Phys. Rev. B, 1994, 50, 16008 CrossRef CAS.
  23. L. W. Finger, R. M. Hazen, R. T. Downs, R. L. Meng and C. W. Chu, Physica C, 1994, 226, 216 CrossRef CAS.
  24. D. E. Cox, Phys. Rev. B, 1998, 38, 6624 Search PubMed.
  25. T. Ito, H. Suematsu, K. Isawa, M. Karppinen and H. Yamauchi, Physica C, 1998, 308, 9 CrossRef CAS.
  26. J. P. R. de Villiers, Am. Min., 1971, 56, 758 Search PubMed.
  27. R. A. Nyquist and R. O. Kagel, Infrared Spectra of Inorganic Compounds(3800–45 cm–1), Academic Press, New York, 1971 Search PubMed.
  28. M. Karppinen and H. Yamauchi, Philos. Mag. B, 1999, 79, 343 Search PubMed.
  29. I. D. Brown and D. Altermatt, Acta Crystallogr., Sect. B, 1985, 41, 244 CrossRef.
Click here to see how this site uses Cookies. View our privacy policy here.